Reputation: 663
I have trained a pix2pix model on tensorflow and the model has been saved in the form of checkpoints with the following files:
model-15000.meta
, model-15000.index
, model-15000.data-00000-of-00001
, graph.pbtxt
, checkpoint
.
Now, I want to convert it to a protobuf file (.pb) for deployment purposes. I came across the freeze_graph.py script to do so, but I am facing trouble with one of the arguments, it being output_node_names
.
I have tried out a couple of layer names, but I get the following error:
AssertionError: generator/decoder_2/batchnorm/scale/gradients is not in graph
Unsure how to find the output_node_names
Upvotes: 5
Views: 7545
Reputation: 477
Try the below code to convert meta to pb file:
import tensorflow as tf
#Step 1
#import the model metagraph
saver = tf.train.import_meta_graph('./model.meta', clear_devices=True)
#make that as the default graph
graph = tf.get_default_graph()
input_graph_def = graph.as_graph_def()
sess = tf.Session()
#now restore the variables
saver.restore(sess, "./model")
#Step 2
# Find the output name
graph = tf.get_default_graph()
for op in graph.get_operations():
print (op.name)
#Step 3
from tensorflow.python.platform import gfile
from tensorflow.python.framework import graph_util
output_node_names="predictions_mod/Sigmoid"
output_graph_def = graph_util.convert_variables_to_constants(
sess, # The session
input_graph_def, # input_graph_def is useful for retrieving the nodes
output_node_names.split(",") )
#Step 4
#output folder
output_fld ='./'
#output pb file name
output_model_file = 'model.pb'
from tensorflow.python.framework import graph_io
#write the graph
graph_io.write_graph(output_graph_def, output_fld, output_model_file, as_text=False)
Hope this works!!!
Upvotes: 2
Reputation: 51
I am having the same problem when trying to freeze the model.
AssertionError: pose:0 is not in graph
I am using this script to print all the tensor names, but I'm still getting the error.
import tensorflow as tf
from tensorflow.python.tools import inspect_checkpoint as chkp
meta_path = './data/trained_variables.ckpt.meta' # Your .meta file
with tf.Session() as sess:
# Restore the graph
saver = tf.train.import_meta_graph(meta_path)
# Load weights
saver.restore(sess,"/Users/me/Desktop/data/trained_variables.ckpt")
## Print tensors
chkp.print_tensors_in_checkpoint_file(file_name="/Users/me/Desktop/data/trained_variables.ckpt",
tensor_name='',
all_tensors=False,
all_tensor_names=True)
Give it a shot, see if you can get the correct name. Let me know, I am facing the same problem.
Upvotes: 0