Reputation: 13
I need to calculate unique ids within different intervals (3,4,5,6 months...) by for each month. I need to do that for different groups as well such as age, gender etc. This is how my data looks like:
ID Yr_month Age Gender
11 2012-01 30 M
11 2012-02 30 M
...
11 2012-12 30 M
12 2012-01 32 F...
The output should look like this:
Yr_month cnt_distinctID_3 count_distinctID_4....
2012-01 300 400
I am able to do this using multiple for loops and dplyr. Is there a faster way using data table to get this done? Thanks!
This is how my code looks like:
setorderv(test,c("id","year_mth"))
setkeyv(test,c("id"))
test <- data.table(cbind(test, first=0L))
test[test[unique(test),,mult="first", which=TRUE], first:=1L]
test1 <- test %>%
group_by(year_mth) %>%
summarize(first_total = sum(first)) %>%
select(year_mth,first_total)
test2 <- test1 %>%
arrange(year_mth) %>%
mutate(Cusum = cumsum(first_total)) %>%
select(year_mth, Cusum)
Then I am running for loop by year_mth and K<- seq(3:36) on the above. Its taking a lot of time as I am running a big dataset.
Upvotes: 0
Views: 292
Reputation: 42582
If I understand the question correctly, the OP wants to count unique IDs in rolling windows of varying sizes. The counts are to be presented in a table where the length of the rolling window runs horizontally and the ending month of the rolling window vertically.
This approach creates all intervalls as a data.table
and aggregates during a non-equi join with the dataset. Finally, the results are reshaped from long to wide format.
The OP has not provided a sample dataset. So, we have to make up our own:
# create year-month sequence
yr_m <- CJ(2012:2014, 1:12)[, sprintf("%4i-%02i", V1, V2)]
n_id <- 100L # number of individual IDs
n_row <- 1e3L # number of rows to create
set.seed(123L) # required for reproducible results
DT <- data.table(ID = sample.int(n_id, n_row, TRUE),
Yr_month = ordered(sample(yr_m, n_row, TRUE), yr_m))
str(DT)
Classes ‘data.table’ and 'data.frame': 1000 obs. of 2 variables: $ ID : int 29 79 41 89 95 5 53 90 56 46 ... $ Yr_month: Ord.factor w/ 36 levels "2012-01"<"2012-02"<..: 10 22 6 31 31 18 28 11 3 16 ... - attr(*, ".internal.selfref")=<externalptr>
Note that Yr_month
has turned into a factor which is required for the subsequent non-equi join which involves comparison operations.
intervals <- rbindlist(
lapply(3:24, function(x) data.table(K = x,
start = head(yr_m, -(x - 1L)),
end = tail(yr_m, -(x - 1L)))
))
For illustration, only intervals of 3 to 24 months length are considered here.
intervals
K start end 1: 3 2012-01 2012-03 2: 3 2012-02 2012-04 3: 3 2012-03 2012-05 4: 3 2012-04 2012-06 5: 3 2012-05 2012-07 --- 513: 24 2012-09 2014-08 514: 24 2012-10 2014-09 515: 24 2012-11 2014-10 516: 24 2012-12 2014-11 517: 24 2013-01 2014-12
DT[intervals, on = .(Yr_month >= start, Yr_month <= end),
.(count = uniqueN(ID), end, K), by = .EACHI][
, dcast(.SD, end ~ K, value.var = "count")]
end 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1: 2012-03 59 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 2: 2012-04 53 64 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 3: 2012-05 59 69 80 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 4: 2012-06 57 72 78 88 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 5: 2012-07 53 62 75 80 89 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 6: 2012-08 50 65 71 81 86 91 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 7: 2012-09 58 65 71 76 84 89 93 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 8: 2012-10 59 67 72 77 82 88 92 94 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 9: 2012-11 57 66 72 77 82 86 91 94 96 NA NA NA NA NA NA NA NA NA NA NA NA NA 10: 2012-12 57 67 75 80 83 88 91 95 97 98 NA NA NA NA NA NA NA NA NA NA NA NA 11: 2013-01 53 63 71 78 83 85 90 93 97 98 99 NA NA NA NA NA NA NA NA NA NA NA 12: 2013-02 57 68 77 82 87 91 92 95 97 97 98 99 NA NA NA NA NA NA NA NA NA NA 13: 2013-03 56 67 75 83 86 88 92 93 96 97 97 98 99 NA NA NA NA NA NA NA NA NA 14: 2013-04 57 67 76 81 87 90 92 95 96 98 99 99 100 100 NA NA NA NA NA NA NA NA 15: 2013-05 65 74 79 83 86 90 93 95 97 98 99 99 99 100 100 NA NA NA NA NA NA NA 16: 2013-06 71 77 83 85 87 89 92 95 97 98 99 99 99 99 100 100 NA NA NA NA NA NA 17: 2013-07 65 78 83 88 90 91 91 94 96 97 98 99 99 99 99 100 100 NA NA NA NA NA 18: 2013-08 57 73 84 88 91 93 94 94 97 99 99 99 100 100 100 100 100 100 NA NA NA NA 19: 2013-09 62 71 81 90 92 95 96 96 96 97 99 99 99 100 100 100 100 100 100 NA NA NA 20: 2013-10 62 71 79 87 93 95 98 98 98 98 98 99 99 99 100 100 100 100 100 100 NA NA 21: 2013-11 61 74 81 87 91 95 96 99 99 99 99 99 100 100 100 100 100 100 100 100 100 NA 22: 2013-12 64 76 83 88 93 96 98 99 99 99 99 99 99 100 100 100 100 100 100 100 100 100 23: 2014-01 56 70 78 84 89 94 96 98 99 99 99 99 99 99 100 100 100 100 100 100 100 100 24: 2014-02 52 67 76 83 88 90 95 96 98 99 99 99 99 99 99 100 100 100 100 100 100 100 25: 2014-03 51 62 72 80 85 89 91 95 96 98 99 99 99 99 99 99 100 100 100 100 100 100 26: 2014-04 58 62 71 76 83 87 90 92 96 97 99 99 99 99 99 99 99 100 100 100 100 100 27: 2014-05 60 67 70 78 82 88 90 92 94 97 98 99 99 99 99 99 99 99 100 100 100 100 28: 2014-06 58 74 78 80 85 88 93 93 94 94 97 98 99 99 99 99 99 99 99 100 100 100 29: 2014-07 60 70 81 83 85 88 90 94 94 95 95 98 99 100 100 100 100 100 100 100 100 100 30: 2014-08 64 71 79 89 91 91 93 94 96 96 96 96 99 99 100 100 100 100 100 100 100 100 31: 2014-09 57 68 74 82 92 94 94 94 95 96 96 96 96 99 99 100 100 100 100 100 100 100 32: 2014-10 57 67 74 79 87 96 97 97 97 97 98 98 98 98 100 100 100 100 100 100 100 100 33: 2014-11 48 63 71 77 82 89 97 98 98 98 98 99 99 99 99 100 100 100 100 100 100 100 34: 2014-12 52 61 71 77 82 86 91 99 99 99 99 99 99 99 99 99 100 100 100 100 100 100 end 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
uniqueN()
is a data.table function which is used here to count the number of unique ID
s.
Upvotes: 1