Reputation: 2748
Things went wrong when I was testing whether fundemental arithmetic types like int, and raw pointers like int*, can be pre-incrementabl/post-incrementable.
//has_operator_overload_functions.hpp
namespace concept_check {
template <class T>
T create_T();
struct disambiguation_t2 {};
struct disambiguation_t1 {
constexpr operator disambiguation_t2 () const noexcept;
};
}
# define create_has_op_overload_fn_test(fn_name, ret_t_of_op_to_test) \
template <class T> \
auto has_ ## fn_name (disambiguation_t1) -> ret_t_of_op_to_test; \
template <class T> \
void has_ ## fn_name (disambiguation_t2); \
template <class T> \
inline constexpr const bool has_ ## fn_name ## _v = !is_same_v<decltype(has_ ## fn_name <T>(disambiguation_t1{})), void>;
# define create_check_op_overload_fn_return_type_test(fn_name, ret_t_of_op_to_test, result_t) \
create_has_op_overload_fn_test(fn_name, ret_t_of_op_to_test) \
_create_check_op_overload_fn_return_type_test(fn_name, ret_t_of_op_to_test, result_t)
# define _create_check_op_overload_fn_return_type_test(fn_name, ret_t_of_op_to_test, result_t) \
template <class T> \
constexpr const bool is_ ## fn_name () noexcept { \
if constexpr(has_ ## fn_name ## _v<T>) \
return is_convertible_v< ret_t_of_op_to_test , result_t >; \
else \
return 0; \
} \
template <class T> \
inline constexpr const bool is_ ## fn_name ## _v = is_ ## fn_name <T>();
namespace concept_check {
create_check_op_overload_fn_return_type_test(pre_incrementable,
decltype(++create_T<T>()), T&)
create_check_op_overload_fn_return_type_test(post_incrementable,
decltype(create_T<T>()++), T)
}//namespace concept_check
//test.hpp
#include <iostream>
#include "has_operator_overload_functions.hpp"
using namespace concept_check;
struct A {
A& operator ++ ();
A operator ++ (int);
};
struct B {
B& operator ++ ();
};
struct C {
C operator ++ (int);
};
struct E {};
int main() {
std::cout << std::boolalpha
<< "incrementable\n\n"
<< "int\n"
<< is_pre_incrementable_v<int> << std::endl
<< is_post_incrementable_v<int> << std::endl
<< "\nchar\n"
<< is_pre_incrementable_v<char> << std::endl
<< is_post_incrementable_v<char> << std::endl
<< "\nfloat\n"
<< is_pre_incrementable_v<float> << std::endl
<< is_post_incrementable_v<float> << std::endl
<< "\ndouble\n"
<< is_pre_incrementable_v<double> << std::endl
<< is_post_incrementable_v<double> << std::endl
<< "\nchar*\n"
<< is_pre_incrementable_v<char*> << std::endl
<< is_post_incrementable_v<char*> << std::endl
<< "\nvoid*\n"
<< is_pre_incrementable_v<void*> << std::endl
<< is_post_incrementable_v<void*> << std::endl
<< "\nA\n"
<< is_pre_incrementable_v<A> << std::endl
<< is_post_incrementable_v<A> << std::endl
<< "\nB\n"
<< is_pre_incrementable_v<B> << std::endl
<< is_post_incrementable_v<B> << std::endl
<< "\nC\n"
<< is_pre_incrementable_v<C> << std::endl
<< is_post_incrementable_v<C> << std::endl
<< "\nE\n"
<< is_pre_incrementable_v<E> << std::endl
<< is_post_incrementable_v<E> << std::endl
<< "\nbool\n"
<< is_pre_incrementable_v<bool> << std::endl
<< is_post_incrementable_v<bool> << std::endl
}
I compiled it using
clang version 5.0.1-svn324012-1~exp1 (branches/release_50)
Target: x86_64-pc-linux-gnu
Thread model: posix
InstalledDir: /usr/bin
Found candidate GCC installation: /usr/bin/../lib/gcc/x86_64-linux-gnu/6
Found candidate GCC installation: /usr/bin/../lib/gcc/x86_64-linux-gnu/6.3.0
Found candidate GCC installation: /usr/lib/gcc/x86_64-linux-gnu/6
Found candidate GCC installation: /usr/lib/gcc/x86_64-linux-gnu/6.3.0
Selected GCC installation: /usr/bin/../lib/gcc/x86_64-linux-gnu/6.3.0
Candidate multilib: .;@m64
Selected multilib: .;@m64
, with command line args -std=c++17 -I .. and ran the binary file I got, and it gave out the following output:
incrementable
int
false
false
char
false
false
float
false
false
double
false
false
char*
false
false
void*
false
false
A
true
true
B
true
false
C
false
true
E
false
false
bool
false
false
As you can see, all the fundemental arithmetic types and raw pointers didn't pass the pre-icrementable/post-incrementable test.
Can any explain why this happened and how to fix this?
Upvotes: 1
Views: 96
Reputation: 35449
create_check_op_overload_fn_return_type_test(pre_incrementable, decltype(++create_T<T>()), T&)
You are using decltype(++create_T<T>())
as an effective constraint on your is_pre_incrementable_v
check. For a type such as A
, this is equivalent to testing e.g. ++A {}
which is valid, as reflected in your results.
For a type such as int
however this is equivalent to testing ++0
, which is not a valid expression. (And so on for the other non-class types.)
There isn't an obvious fix. You could decide to constrain on e.g. ++create_T<T&>()
instead (it’s also a good time to mention std::declval
). But pay attention that this has the following consequence:
template<typename Arg>
auto under_constrained(Arg const& arg)
-> std::enable_if_t<is_pre_incrementable_v<Arg>>
{
++arg;
}
template<typename Arg>
auto over_constrained(Arg& arg)
-> std::enable_if_t<is_pre_incrementable_v<Arg>, std::decay_t<Arg>>
{
auto copy = arg;
++copy;
return copy;
}
++mutable_arg
given an imaginary Arg mutable_arg;
variable, but the body operates on an immutable variable (which of course will not be incrementable in most circumstances)int const immutable_variable = 0;
as an argument it effectively tests for ++immutable_arg
, but the body operates on an int
variableNow, these example could be tweaked so that they are instead constrained on e.g. is_pre_incrementable_v<Arg const&>
and is_pre_incrementable_v<std::decay_t<Arg>&>
respectively. But that requires care on the concept user’s part. That’s why the fix is not necessarily the go-to solution.
It all comes down to the meaning of template parameters for a given concept.
Upvotes: 2