Reputation: 1
I'm trying to convert below code to recursive function but seems i'm quite confusing how could i write below in recursive function. could help me to give some thoughts?
Basically, what I'm generating below is the sum of the first n odd numbers.
def sum_odd_n(n):
total=0
j=2*n-1
i=1
if i>j:
return 1
else:
total =((j+1)/2)**2
i+=2
return total
> >>> sum_odd_n(5)
> 25.0
> >>> sum_odd_n(4)
> 16.0
> >>> sum_odd_n(1)
> 1.0
Upvotes: 0
Views: 9118
Reputation: 11
Try:
def sum_of_odd(n):
if n>0:
x=(n*2)-1
return x+sum_of_odd(n-1)
else:
return 0
The answer of this:
sum_of_odd(5)
will be:
25
Upvotes: 1
Reputation: 23955
Recursive functions have at least one base case and at least one recursive call. Here are some hints:
def f(n):
# Base case - for which
# n do we already know the answer
# and can return it without
# more function calls? (Clearly,
# this must also terminate any
# recursive sequence.)
if n == ???:
return ???
# Otherwise, lets say we know the answer
# to f(n - 1) and assign it to
# the variable, 'rest'
rest = f(n - 1)
# What do we need to do with 'rest'
# to return the complete result
return rest + ???
Fill out the question marks and you'll have the answer.
Upvotes: 1
Reputation: 121
Try :
def sum_odd_n(n):
if n>0:
if n==1:
return 1
else:
return 2*n-1 + sum_odd_n(n-1)
Upvotes: 0
Reputation: 978
This smells somewhat like homework so I'm going to offer some advice instead of a solution.
Recursion is about expressing a problem in terms of itself.
Suppose you know the sum of the odd numbers from N to N - 2. Can you write the total sum in terms of this sum and the function itself (or a related helper function)?
Upvotes: 1