Reputation: 35
I have an issue making a simple plot while setting the x-axis in python. Here is my code:
import import matplotlib.pyplot as plt
y = [2586.087776040828,2285.8044466570227,1991.0556336526986,1719.7261325405243,1479.8272625661773,1272.5176077500348,1096.4367842436593,949.02201512882527,826.89866676342137,726.37921828890637,636.07392349697909,553.52559247838076,480.71257022562935,418.00424110010181,364.41801903538288,318.67575156686001,280.17668207838426,248.15399589447813,221.75070551820284,199.59983992701842,179.72014852370447,162.27141772637697,147.14507926321306,134.22828323366301,123.36572367962557,114.33589702168332,106.8825327470323,100.69181027167537,95.515144406404971,91.091036326792434]
x = range(0,30)
fig3_4 ,ax3_4 = plt.subplots()
ax3_4.semilogx(range(0,30),(loss_ave_hist))
ax3_4.set_title('Validation Performance')
# ax3_4.set_xticks(np.arange(0,30, 1.0))
ax3_4.set_xlabel('i')
ax3_4.set_ylabel('Average Loss')
fig3_4.show()
plt.show()
I believe my code is right! Notice the line of code I commented, it should set the axis with the values I want, however, it throws an error. I cannot figure out why!
Here is my plot from the my plot:
Upvotes: 1
Views: 9344
Reputation: 879501
Here is a way to make a semilogx plot but with xticks labelled according to their original (non-log) values.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
y = np.array([2586.087776040828, 2285.8044466570227, 1991.0556336526986, 1719.7261325405243, 1479.8272625661773, 1272.5176077500348, 1096.4367842436593, 949.02201512882527, 826.89866676342137, 726.37921828890637, 636.07392349697909, 553.52559247838076, 480.71257022562935, 418.00424110010181, 364.41801903538288, 318.67575156686001, 280.17668207838426, 248.15399589447813, 221.75070551820284, 199.59983992701842, 179.72014852370447, 162.27141772637697, 147.14507926321306, 134.22828323366301, 123.36572367962557, 114.33589702168332, 106.8825327470323, 100.69181027167537, 95.515144406404971, 91.091036326792434])
x = np.arange(1, len(y)+1)
fig, ax = plt.subplots()
ax.plot(x, y, 'o-')
ax.set_xlim(x.min(), x.max())
ax.set_xscale('log')
formatter = mticker.ScalarFormatter()
ax.xaxis.set_major_formatter(formatter)
ax.xaxis.set_major_locator(mticker.FixedLocator(np.arange(0, x.max()+1, 5)))
plt.show()
yields
FixedLocator(np.arange(0, x.max()+1, 5)))
places a tick mark at every 5th value in x
.
With ax.xaxis.set_major_locator(mticker.FixedLocator(x))
, the xticklabels got a bit too crowded.
Note I changed x = range(0, 30)
to x = np.arange(1, len(y)+1)
since
the length of x
should match the length of y
and since we are using a logarithmic x
-axis, it does not make sense to start at x=0
.
Notice also that in your original code the first y
value (2586.08...) is missing since its associated x
value, 0, is off-the-chart on a logarithmic scale.
Upvotes: 1
Reputation: 2656
I used the following and it ran without errors.
All I changed is the typo in your first line of your imports, and replaced loss_ave_hist
with y
(i.e. what you called your data in your question.
y = [2586.087776040828,2285.8044466570227,1991.0556336526986,1719.7261325405243,1479.8272625661773,1272.5176077500348,1096.4367842436593,949.02201512882527,826.89866676342137,726.37921828890637,636.07392349697909,553.52559247838076,480.71257022562935,418.00424110010181,364.41801903538288,318.67575156686001,280.17668207838426,248.15399589447813,221.75070551820284,199.59983992701842,179.72014852370447,162.27141772637697,147.14507926321306,134.22828323366301,123.36572367962557,114.33589702168332,106.8825327470323,100.69181027167537,95.515144406404971,91.091036326792434]
import matplotlib.pyplot as plt
fig3_4 ,ax3_4 = plt.subplots()
x = range(0,30)
ax3_4.semilogx(range(0,30),(y))
ax3_4.set_title('Validation Performance')
# ax3_4.set_xticks(np.arange(0,30, 1.0))
ax3_4.set_xlabel('i')
ax3_4.set_ylabel('Average Loss')
plt.show()
UPDATE: I understand you want to label the x-axis with values from 0..29, but on a log scale, all those numbers are very close.
Here is an image with xticks set (I din't get any errors):
fig3_4 ,ax3_4 = plt.subplots()
x = range(0,30)
ax3_4.semilogx(range(0,30),(y))
ax3_4.set_title('Validation Performance')
ax3_4.set_xticks(np.arange(0,30, 1.0))
ax3_4.set_xlabel('i')
ax3_4.set_ylabel('Average Loss')
plt.show()
Here is an image where I replace semilogx
with semilogy
.
fig3_4 ,ax3_4 = plt.subplots()
x = range(0,30)
ax3_4.semilogy(range(0,30),(y))
ax3_4.set_title('Validation Performance')
ax3_4.set_xticks(np.arange(0,30, 1.0))
ax3_4.set_xlabel('i')
ax3_4.set_ylabel('Average Loss')
plt.show()
Does any of this resemble your goal?
Upvotes: 1