Reputation: 934
How to apply a function to each column of dataframe "groupwisely" ? I.e. group by values of one column and calculate e.g. means for each group+ other columns. The expected output is dataframe with index - names of different groups, and values - means for each group+column
E.g. consider:
df = pd.DataFrame(np.arange(16).reshape(4,4), columns=['A', 'B', 'C', 'D'])
df['group'] = ['a', 'a', 'b','b']
A B C D group
0 0 1 2 3 a
1 4 5 6 7 a
2 8 9 10 11 b
3 12 13 14 15 b
I want to calculate e.g. np.mean for each column, but "groupwisely", in that particular example it can be done by:
t = df.groupby('group').agg({'A': np.mean, 'B': np.mean, 'C': np.mean, 'D': np.mean })
A B C D
group
a 2 3 4 5
b 10 11 12 13
However, it requires explicit use of column names 'A': np.mean, 'B': np.mean, 'C': np.mean, 'D': np.mean which is unacceptable for my task, since they can be changed.
Upvotes: 2
Views: 558
Reputation: 862661
As MaxU
commented simplier is groupby
+ GroupBy.mean
:
df1 = df.groupby('group').mean()
print (df1)
A B C D
group
a 2 3 4 5
b 10 11 12 13
If need column from index:
df1 = df.groupby('group', as_index=False).mean()
print (df1)
group A B C D
0 a 2 3 4 5
1 b 10 11 12 13
Upvotes: 2
Reputation: 10359
You don't need to explicitly name the columns.
df.groupby('group').agg('mean')
Will produce the mean for each group for each column as requested:
A B C D
group
a 2 3 4 5
b 10 11 12 13
Upvotes: 2
Reputation: 1687
The below does the job:
df.groupby('group').apply(np.mean, axis=0)
giving back
A B C D
group
a 2.0 3.0 4.0 5.0
b 10.0 11.0 12.0 13.0
apply
takes axis = {0,1}
as additional argument, which in turn specifies whether you want to apply the function row-wise or column-wise.
Upvotes: 1