Reputation: 33
I want to use the tf.nn.dynamic_rnn
function of tensorflow to create a RNN but it allows me to set a hidden size for only one of my layers.
Here is my code:
self._Input=tf.placeholder(tf.float64,shape=(None,self._time_size,self._batch_dim),name='input')
self._Expected_o=tf.placeholder(tf.float64,shape=(None,self._time_size,self._cell_output_size),name='Expected_o')
#creation of the network
initializer = tf.random_uniform_initializer(-1, 1)
cell = tf.nn.rnn_cell.GRUCell(self._hidden_size,kernel_initializer=initializer)
rnn_cells = tf.nn.rnn_cell.MultiRNNCell([cell] * self._num_layer)
# network
self._output, out_state = tf.nn.dynamic_rnn(cell=rnn_cells,inputs= self._Input, dtype=tf.float64)
Everything works fine as long as I keep my hidden_size
value as the same as the last dimension of my Input place holder, i.e., _batch_dim
.
But when it's different, I always get this message of error:
ValueError: Dimensions must be equal, but are 8 and X for 'rnn/while/rnn/multi_rnn_cell/cell_0/cell_0/gru_cell/MatMul_2' (op: 'MatMul') with input shapes: [?,Y], [X,Y].
where X
is the value that I put for my hidden_size + 1
and Y
the value of hidden_size*2
. I've tried many value of hidden_size
and this two numbers, X
and Y
appear each time. The message error indicate that the error occur during the calling of tf.rnn.dynamic_rnn
.
Upvotes: 3
Views: 1989
Reputation: 53758
Change your code from ...
cell = tf.nn.rnn_cell.GRUCell(self._hidden_size,kernel_initializer=initializer)
rnn_cells = tf.nn.rnn_cell.MultiRNNCell([cell] * self._num_layer)
to ...
layers = [tf.nn.rnn_cell.GRUCell(self._hidden_size,kernel_initializer=initializer)
for _ in self._num_layer]
rnn_cells = tf.nn.rnn_cell.MultiRNNCell(layers)
... and the deeper GRU layers will be able to adapt to the output from the earlier layers.
Upvotes: 4