Reputation: 2876
I import data from a CSV where I am replacing the empty fields with an 'EMPTYFIELD' value.
pd.read_csv('myFile.csv', usecols=['AAA', 'BBB', 'CCC'])
df = df.fillna('EMPTYFIELD')
I am trying to create a dataframe that will have all the rows that contain an 'EMPTYFIELD' value. That implies that at least one column contains this value. I used the following and it works off course:
error = df[df.AAA.str.contains('EMPTYFIELD')]
error = error[error.BBB.str.contains('EMPTYFIELD')]
error = error[error.CCC.str.contains('EMPTYFIELD')]
Now, I am trying to reduct the lines in my code. So, I was thinking of using a lambda instead without referencing to the columns (ideal):
error2 = df.apply(lambda x: 'EMPTYFIELD' if 'EMPTYFIELD' in x else x)
#error2 = df.apply(lambda x : any([ isinstance(e, 'EMPTYFIELD') for e in x ]), axis=1)
and then I tried referencing the columns too:
error2 = df[usecols].apply(lambda x: 'EMPTYFIELD' if 'EMPTYFIELD' in x else x)
and
error2 = df[df[usecols].isin(['EMPTYFIELD'])]
None of the above work. I print the results in a new CSV file. I can see all the rows even if they contain the 'EMPTYFIELD' value.
UPD: This is my extended code. Some of the answers return an error possible because of the lines below:
varA = 'AAA';
dfGrouped = df.groupby(varA, as_index=False).agg({'Start Date': 'min', 'End Date': 'max'}).copy()
varsToKeep = ['AAA', 'BBB', 'CCC', 'Start Date_grp', 'End Date_grp' ]
dfTemp = pd.merge(df, dfGrouped, how='inner', on='AAA', suffixes=(' ', '_grp'), copy=True)[varsToKeep]
errors = dfTemp[~np.logical_or.reduce([dfTemp[varsToKeep].str.contains('EMPTYFIELD') for varsToKeep in dfTemp])]
Upvotes: 0
Views: 81
Reputation: 164773
One way is to use np.logical_or.reduce
. Here is an example:
import pandas as pd, numpy as np
df = pd.DataFrame([['A', 'B', 'C', 'D'],
['E', 'F', 'G', 'H'],
['G', 'A', 'D', 'I'],
['L', 'K', 'A', 'J'],
['S', 'T', 'U', 'V']],
columns=['COL1', 'COL2', 'COL3' ,'COL4'])
df[~np.logical_or.reduce([df[col].astype(str).str.contains('A') for col in df])]
# COL1 COL2 COL3 COL4
# 1 E F G H
# 4 S T U V
Upvotes: 1
Reputation: 43524
Here's an illustration of how to use dropna()
as I mentioned in the comments:
df = pd.DataFrame(
{'A': [5,3,5,6],
'B': [None, "foo", "bar", "foobar"],
'C': ["foo","bar",None, "bat"]
}
)
no_errors = df.dropna()
errors = df[~(df.index.isin(no_errors.index))]
Which results in the following 2 dataframes:
print(no_errors)
# A B C
#1 3 foo bar
#3 6 foobar bat
print(errors)
# A B C
#0 5 None foo
#2 5 bar None
Now if you want, you can call fillna()
on the error DataFrame.
Upvotes: 1
Reputation: 323326
As I mention using apply
, data from jp
df[~df.apply(lambda x : x.str.contains('A')).any(1)]
Out[491]:
COL1 COL2 COL3 COL4
1 E F G H
4 S T U V
Upvotes: 0