Reputation: 2439
I have a following JSON structure:
{
"stuff": 1, "some_str": "srt", list_of_stuff": [
{"element_x":1, "element_y":"22x"},
{"element_x":3, "element_y":"23x"}
]
},
{
"stuff": 2, "some_str": "srt2", "list_of_stuff": [
{"element_x":1, "element_y":"22x"},
{"element_x":4, "element_y":"24x"}
]
},
When I read it into a PySpark DataFrame as json:
import pyspark.sql
import json
from pyspark.sql import functions as F
from pyspark.sql.types import *
schema = StructType([
StructField("stuff", IntegerType()),
StructField("some_str", StringType()),
StructField("list_of_stuff", ArrayType(
StructType([
StructField("element_x", IntegerType()),
StructField("element_y", StringType()),
])
))
])
df = spark.read.json("hdfs:///path/file.json/*", schema=schema)
df.show()
I get the following:
+--------+---------+-------------------+
| stuff | some_str| list_of_stuff |
+--------+---------+-------------------+
| 1 | srt | [1,22x], [3,23x] |
| 2 | srt2 | [1,22x], [4,24x] |
+--------+---------+-------------------+
Seems like PySpark flattens the key names for the ArrayType, although I can still see them when I do df.printSchema()
:
root
|-- stuff: integer (nullable = true)
|-- some_str: string (nullable = true)
|-- list_of_stuff: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- element_x: integer (nullable = true)
| | |-- element_y: string (nullable = true)
Question:
I need to count the distinct occurrences of element_y
within my DataFrame. So given the example JSON, I would get this output:
22x: 2, 23x: 1, 24x :1
I am not sure how to get into the ArrayType and count the distinct values of the sub-element element_y
. Any help appreciated.
Upvotes: 1
Views: 2349
Reputation: 215117
One way to do this could be using rdd
, flatten
the array with flatMap
and then count:
df.rdd.flatMap(lambda r: [x.element_y for x in r['list_of_stuff']]).countByValue()
# defaultdict(<class 'int'>, {'24x': 1, '22x': 2, '23x': 1})
Or using data frame, explode
the column first, then you can access element_y
in each array; groupBy
the element_y
, then count
should give the result you need:
import pyspark.sql.functions as F
(df.select(F.explode(df.list_of_stuff).alias('stuff'))
.groupBy(F.col('stuff').element_y.alias('key'))
.count()
.show())
+---+-----+
|key|count|
+---+-----+
|24x| 1|
|22x| 2|
|23x| 1|
+---+-----+
Upvotes: 3