Reputation: 395
How can i go about implemting 8/4 queens problem?Should i use DFS/BFS,I think DFs will be better. Can any one give some pseudocode/guidlines?
Upvotes: 3
Views: 6708
Reputation: 415
Here is my implementation using backtracking. Change the value of N to get the different solutions.
It will print all the solutions available for given number of queens.
package com.org.ds.problems;
public class NQueueProblem {
private static int totalSolution = 0;
public static void main(String[] args) {
int n = 5;
int arr[][] = new int[n][n];
backTrack(arr, 0);
System.out.println("\nTotal Number of Solutions are:- " + totalSolution);
}
private static void printQueuens(int[][] arr) {
totalSolution++;
System.out.println("\n========Start Printing Solution "+totalSolution+"=========");
for(int i=0; i<arr.length;i++) {
for(int j=0; j<arr.length;j++) {
if(arr[i][j] == 1)
System.out.print(" Q"+(i+1) + " |");
else
System.out.print(" |");
}
System.out.println();
}
}
private static boolean backTrack(int[][] arr, int row) {
if (row < 0 || row >= arr.length)
return true;
for (int col = 0; col < arr.length; col++) {
if (isAttacked(arr, row, col)) {
arr[row][col] = 1;
if (backTrack(arr, row + 1)) {
if(row == (arr.length-1)) {
printQueuens(arr);
arr[row][col] = 0;
}
else {
return true;
}
} else {
arr[row][col] = 0;
}
}
}
return false;
}
private static boolean isAttacked(int[][] arr, int row, int col) {
if (row == 0)
return true;
// check for same row
for (int i = 0; i < arr.length; i++) {
if (arr[row][i] == 1)
return false;
}
// check for same col
for (int i = 0; i <= row; i++) {
if (arr[i][col] == 1)
return false;
}
// check for diagonal
// a.) Left dia
int i = row - 1;
int j = col - 1;
while (i >= 0 && j >= 0) {
if (arr[i][j] == 1)
return false;
i--;
j--;
}
// b.) right dia
i = row - 1;
j = col + 1;
while (i >= 0 && j < arr.length) {
if (arr[i][j] == 1)
return false;
i--;
j++;
}
return true;
}
}
Upvotes: 0
Reputation: 426
If queens are at (i,j) and (k,l) coordinates,then they can attack each other if
|i-k|=|j-l| (diagonally),| | denotes the absolute value
bool place(k,i)
{
//returns true if the queen can be placed at k-th row and i-th column
//x[] is a global array with first (k-1) values set already.
//x[p]=q means a queen is at location (p,q)
for(j=1 to k-1)
{
if(x[j]==i)||(ABS(x[j]-i)==ABS(j-k)) //checking if another queen in same column or diagonally
return false;
}
return true;
}
To print all possible placements using backtracking:
void NQueens(k,n) {
for(i=1 to n)
{
if(place(k,i)) //checking if queen can be placed at (k,i)
{
x[k]=i;
if(k==n) then write (x[1:n]);
else Nqueens(k+1,n);
}
}
}
*With reference from saurabh school
Upvotes: 0
Reputation: 1578
My solution have 2 pre-defined logics, there is only one queen at row, and there is only one queen at column. There is an one-dimensional array that length is 8. All array value set one of the 0-7, but all values used exactly one time (permutation of values that 0-7) arr[0]=5 value means queen at column 6 at first row arr[1]=3 value means queen at column 4 at second row, just control cross violation values on array check for, there is no need for check line or row violation. Permutation and cross violation functions all you need, (C++ STL has permutation functions, that just need to cross violation functions)
Upvotes: 0
Reputation: 40558
Use a stack and backtracking, easiest way is via recursion.
See these other SO posts:
Upvotes: 2