Reputation: 635
I have a pandas series object
<class 'pandas.core.series.Series'>
that look like this:
userId
1 3072 1196 838 2278 1259
2 648 475 1 151 1035
3 457 150 300 21 339
4 1035 7153 953 4993 2571
5 260 671 1210 2628 7153
6 4993 1210 2291 589 1196
7 150 457 111 246 25
8 1221 8132 30749 44191 1721
9 296 377 2858 3578 3256
10 2762 377 2858 1617 858
11 527 593 2396 318 1258
12 3578 2683 2762 2571 2580
13 7153 150 5952 35836 2028
14 1197 2580 2712 2762 1968
15 1245 1090 1080 2529 1261
16 296 2324 4993 7153 1203
17 1208 1234 6796 55820 1060
18 1377 1 1073 1356 592
19 778 1173 272 3022 909
20 329 534 377 73 272
21 608 904 903 1204 111
22 1221 1136 1258 4973 48516
23 1214 1200 1148 2761 2791
24 593 318 162 480 733
25 314 969 25 85 766
26 293 253 4878 46578 64614
27 1193 2716 24 2959 2841
28 318 260 58559 8961 4226
29 318 260 1196 2959 50
30 1077 1136 1230 1203 3481
642 123 593 750 1212 50
643 750 671 1663 2427 5618
644 780 3114 1584 11 62
645 912 2858 1617 1035 903
646 608 527 21 2710 1704
647 1196 720 5060 2599 594
648 46578 50 745 1223 5995
649 318 300 110 529 246
650 733 110 151 318 364
651 1240 1210 541 589 1247
652 4993 296 95510 122900 736
653 858 1225 1961 25 36
654 333 1221 3039 1610 4011
655 318 47 6377 527 2028
656 527 1193 1073 1265 73
657 527 349 454 357 97
658 457 590 480 589 329
659 474 508 1 288 477
660 904 1197 1247 858 1221
661 780 1527 3 1376 5481
662 110 590 50 593 733
663 2028 919 527 2791 110
664 1201 64839 1228 122886 1203
665 1197 858 7153 1221 6539
666 318 300 161 500 337
667 527 260 318 593 223
668 161 527 151 110 300
669 50 2858 4993 318 2628
670 296 5952 508 272 1196
671 1210 1200 7153 593 110
What is the best way to go about outputting this to a txt file (e.g. output.txt) such that the format look like this?
User-id1 movie-id1 movie-id2 movie-id3 movie-id4 movie-id5
User-id2 movie-id1 movie-id2 movie-id3 movie-id4 movie-id5
The values on the far left are the userId's and the other values are the movieId's.
Here is the code that generated the above:
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
def predict(l):
# finds the userIds corresponding to the top 5 similarities
# calculate the prediction according to the formula
return (df[l.index] * l).sum(axis=1) / l.sum()
# use userID as columns for convinience when interpretering the forumla
df = pd.read_csv('ratings.csv').pivot(columns='userId',
index='movieId',
values='rating')
df = df - df.mean()
similarity = pd.DataFrame(cosine_similarity(
df.T.fillna(0)), index=df.columns, columns=df.columns)
res = df.apply(lambda col: ' '.join('{}'.format(mid) for mid in (0 * col).fillna(
predict(similarity[col.name].nlargest(6).iloc[1:])).nlargest(5).index))
#Do not understand why this does not work for me but works below
df = pd.DataFrame.from_items(zip(res.index, res.str.split(' ')))
#print(df)
df.columns = ['movie-id1', 'movie-id2', 'movie-id3', 'movie-id4', 'movie-id5']
df['customer_id'] = df.index
df = df[['customer_id', 'movie-id1', 'movie-id2', 'movie-id3', 'movie-id4', 'movie-id5']]
df.to_csv('filepath.txt', sep=' ', index=False)
I tried implementing @emmet02 solution but got this error, I do not understand why I got it though:
ValueError: Length mismatch: Expected axis has 671 elements, new values have 5 elements
Any advice is appreciated, please let me know if you need any more information or clarification.
Upvotes: 3
Views: 28267
Reputation: 58281
old question but adding an answer so that one can get help
From question's title it seems like user wanted to dump console output to a file — Use .to_string()
method to dump a DataFrame (or Series) into a text file in the same format as we see on console. For example I copied OP's example, and prepared a DataFrame using pd.read_clipboard()
:
>>> df = pd.read_clipboard(index_col=0, names=['movie-id1',
'movie-id2',
'movie-id3',
'movie-id4',
'movie-id5'])
>>> df.index.name = 'userId'
>>> with open("/home/grijesh/Downloads/example.txt", 'w') as of:
df.to_string(buf=of)
One can also learn more about formatting code from io/formats/format.py
PS: used it for fairly big data-set it worked fine - used for text pattern observation observation.
Upvotes: 0
Reputation: 942
I would suggest turning your pd.Series into a pd.DataFrame first.
df = pd.DataFrame.from_items(zip(series.index, series.str.split(' '))).T
So long as the Series has the same number of values (for every entry!), separated by a space, this will return a dataframe in this format
Out[49]:
0 1 2 3 4
0 3072 648 457 1035 260
1 1196 475 150 7153 671
2 838 1 300 953 1210
3 2278 151 21 4993 2628
4 1259 1035 339 2571 7153
Next I would name the columns appropriately
df.columns = ['movie-id1', 'movie-id2', 'movie-id3', 'movie-id4', 'movie-id5']
Finally, the dataframe is indexed by customer id (I am supposing this based upon your series index). We want to move that into the dataframe, and then reorganise the columns.
df['customer_id'] = df.index
df = df[['customer_id', 'movie-id1', 'movie-id2', 'movie-id3', 'movie-id4', 'movie-id5']]
This now leaves you with a dataframe like this
customer_id movie-id1 movie-id2 movie-id3 movie-id4 movie-id5
0 0 3072 648 457 1035 260
1 1 1196 475 150 7153 671
2 2 838 1 300 953 1210
3 3 2278 151 21 4993 2628
4 4 1259 1035 339 2571 7153
which I would recommend you write to disk as a csv using
df.to_csv('filepath.csv', index=False)
If however you want to write it as a text file, with only spaces separating, you can use the same function but pass the separator.
df.to_csv('filepath.txt', sep=' ', index=False)
I don't think that the Series object is the correct choice of data structure for the problem you want to solve. Treating numerical data as numerical data (and in a DataFrame) is far easier than maintaining 'space delimited string' conversions imo.
Upvotes: 7
Reputation: 13716
It's also worth avoiding that csv-writing hackery, kind of required when the series is text to avoid escaping/quoting hell. A la:
with open(filename, 'w') as f:
for entry in df['target_column']:
f.write(entry)
Of course you can add the series index yourself in the loop, if desired.
Upvotes: 4
Reputation: 4417
I suggest modifying the code as shown below
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
def predict(l):
# finds the userIds corresponding to the top 5 similarities
# calculate the prediction according to the formula
return (df[l.index] * l).sum(axis=1) / l.sum()
# use userID as columns for convinience when interpretering the forumla
df = pd.read_csv('ratings.csv').pivot(columns='userId',
index='movieId',
values='rating')
df = df - df.mean()
similarity = pd.DataFrame(cosine_similarity(
df.T.fillna(0)), index=df.columns, columns=df.columns)
res = df.apply(lambda col: (0 * col).fillna(
predict(similarity[col.name].nlargest(6).iloc[1:])
).nlargest(5).index.tolist()
).apply(pd.Series).rename(
columns=lambda col_name: 'movie-id{}'.format(col_name + 1)).reset_index(
).rename(columns={'userId': 'customer_id'})
# convert to csv
res.to_csv('filepath.txt', sep = ' ',index = False)
res.head()
In [2]: res.head()
Out[2]:
customer_id movie-id1 movie-id2 movie-id3 movie-id4 movie-id5
0 1 3072 1196 838 2278 1259
1 2 648 475 1 151 1035
2 3 457 150 300 21 339
3 4 1035 7153 953 4993 2571
4 5 260 671 1210 2628 7153
show the file
In [3]: ! head -5 filepath.txt
customer_id movie-id1 movie-id2 movie-id3 movie-id4 movie-id5
1 3072 1196 838 2278 1259
2 648 475 1 151 1035
3 457 150 300 21 339
4 1035 7153 953 4993 2571
Upvotes: 1
Reputation: 321
You can use the following approach, splitting the items of your Series
object (that I called s
) into lists and converting those a list of those lists into a DataFrame
object (that I called df
):
df = pd.DataFrame([[s.index[i]] + s.str.split(' ')[i] for i in range(0, len(s))])
The [s.index[i]] + s.str.split(' ')[i]
part is responsible for concatenation of the index at the beginning of the movie ids lists, and this is done for all rows available in the series.
After that, you could just dump the DataFrame
to a .txt
file using a space as separator:
df.to_csv('output.txt', sep=' ', index=False)
You could also name your columns before dumping it, as suggested earlier.
Upvotes: 4