Reputation: 183
I have a tibble data frame with two list columns. Within the list column mat_base
, each row contains a 2x2 matrix. In the list column mat_sim
, each row contains a list of 10 2x2 matrices. I would like to create a new list column mat_out
, which is the sum of the mat_base
matrix and each of the mat_sim
matrices (within a given row). I.e. Each row of mat_out
should contain a list of 10 matrices.
I assume there is a way to do this using lapply or the purrr
library, but I haven't been able to figure it out. Any help appreciated.
library(tibble)
library(dplyr)
library(purrr)
mat_base <- list(diag(2) * 1, diag(2) * 2, diag(2) * 3)
mat_sim_a <- replicate(10, matrix(rnorm(4), nrow = 2), simplify = F)
mat_sim_b <- replicate(10, matrix(rnorm(4), nrow = 2), simplify = F)
mat_sim_c <- replicate(10, matrix(rnorm(4), nrow = 2), simplify = F)
dat <- tibble(group = c('a', 'b', 'c')) %>%
mutate(mat_base = mat_base,
mat_sim = list(mat_sim_a, mat_sim_b, mat_sim_c))
# doesn't work
dat %>%
mutate(mat_out = lapply(.$mat_sim, function(x, y) x + y, y = .$mat_base))
# doesn't work
dat %>%
mutate(mat_out = purrr::map(.$mat_sim, function(x, y) x + y, y = .$mat_base))
Upvotes: 2
Views: 303
Reputation: 887213
We could use a nested map2
to get the +
of 'mat_base' and 'mat_sim' to create the 'mat_out' as a column
dat %>%
mutate(mat_out = map2(mat_base, mat_sim, ~
map2(list(.), .y, `+`)))
# A tibble: 3 x 4
# group mat_base mat_sim mat_out
# <chr> <list> <list> <list>
#1 a <dbl [2 x 2]> <list [10]> <list [10]>
#2 b <dbl [2 x 2]> <list [10]> <list [10]>
#3 c <dbl [2 x 2]> <list [10]> <list [10]>
Upvotes: 2
Reputation: 1987
You can solve the issue by using lapply
on position rather than the actual list, which lets you access nested levels:
dat %>%
mutate(mat_out = lapply(1:3, function(x)
lapply(dat$mat_sim[[x]],function(y) y+dat$mat_base[[x]])))
Upvotes: 1