Reputation: 4879
I am writing a custom function where I want one of the arguments to take a list of variables. I have managed to use rlang
and some rudimentary understanding of ...
to properly read this list in the function. But I don't know how to assign this list as argument to another function (like dplyr::group_by
). I am fully reproducible example below along with the final result I want.
# loading the needed libraries
library(dplyr)
library(rlang)
library(datasets)
# defining the custom function
prac.fn <- function(data, vars = ..., measure) {
# getting the dataframe ready
df <-
dplyr::select(.data = data,
!!rlang::enquo(vars),
!!rlang::enquo(measure))
# print to see if all variables are included
print(head(df))
# summarize by specified grouping variables
df %>%
dplyr::group_by(.data = ., c(!!rlang::enquo(vars))) %>%
dplyr::summarise(mean = mean(!!rlang::enquo(measure)))
}
# use the function (doesn't work)
prac.fn(data = mtcars,
vars = c(cyl, am),
measure = wt)
#> cyl am wt
#> Mazda RX4 6 1 2.620
#> Mazda RX4 Wag 6 1 2.875
#> Datsun 710 4 1 2.320
#> Hornet 4 Drive 6 0 3.215
#> Hornet Sportabout 8 0 3.440
#> Valiant 6 0 3.460
#> Error in mutate_impl(.data, dots): Column `c(c(cyl, am))` must be length 32 (the number of rows) or one, not 64
# output I want
mtcars %>%
dplyr::group_by(cyl, am) %>%
dplyr::summarise(mean = mean(wt))
#> # A tibble: 6 x 3
#> # Groups: cyl [?]
#> cyl am mean
#> <dbl> <dbl> <dbl>
#> 1 4.00 0 2.94
#> 2 4.00 1.00 2.04
#> 3 6.00 0 3.39
#> 4 6.00 1.00 2.76
#> 5 8.00 0 4.10
#> 6 8.00 1.00 3.37
Created on 2018-02-17 by the reprex package (v0.2.0).
Upvotes: 1
Views: 355
Reputation: 886928
In the group_by
, after converting the 'vars' to quosure (enquo
), flatten the expression with quo_squash
, convert it to a list
(as.list
) and remove the first element ie. c
, then with !!!
evaluate it
prac.fn <- function(data, vars, measure) {
data %>%
select(!!rlang::enquo(vars),
!!rlang::enquo(measure)) %>%
dplyr::group_by(!!! as.list(quo_squash(rlang::enquo(vars)))[-1]) %>%
dplyr::summarise(mean = mean(!!rlang::enquo(measure)))
}
-testing
prac.fn(data = mtcars,
vars = c(cyl, am),
measure = wt)
# A tibble: 6 x 3
# Groups: cyl [?]
# cyl am mean
# <dbl> <dbl> <dbl>
#1 4.00 0 2.94
#2 4.00 1.00 2.04
#3 6.00 0 3.39
#4 6.00 1.00 2.76
#5 8.00 0 4.10
#6 8.00 1.00 3.37
Checking with more number of groups
prac.fn(data = mtcars,
vars = c(cyl, am, gear),
measure = wt)
# A tibble: 10 x 4
# Groups: cyl, am [?]
# cyl am gear mean
# <dbl> <dbl> <dbl> <dbl>
# 1 4.00 0 3.00 2.46
# 2 4.00 0 4.00 3.17
# 3 4.00 1.00 4.00 2.11
# 4 4.00 1.00 5.00 1.83
# 5 6.00 0 3.00 3.34
# 6 6.00 0 4.00 3.44
# 7 6.00 1.00 4.00 2.75
# 8 6.00 1.00 5.00 2.77
# 9 8.00 0 3.00 4.10
#10 8.00 1.00 5.00 3.37
It is not clear whether the OP always wanted to use c()
for vars
argument i.e. if there is a single grouping variable, the function works if the behavior of passing the argument is the same
prac.fn(data = mtcars,
vars = c(cyl),
measure = wt)
#<quosure>
# expr: ^c(cyl)
# env: global
# A tibble: 3 x 2
# cyl mean
# <dbl> <dbl>
#1 4.00 2.29
#2 6.00 3.12
#3 8.00 4.00
But, if we have to change the behavior i.e. vars = cyl
without the c()
then it needs to be addressed with an if/else
statement i.e.
prac.fnN <- function(data, vars, measure) {
vars <- as.list(quo_squash(enquo(vars)))
vars <- if(length(vars) ==1) vars else vars[-1]
data %>%
select(!!! vars,
!!rlang::enquo(measure)) %>%
dplyr::group_by(!!! vars) %>%
dplyr::summarise(mean = mean(!!rlang::enquo(measure)))
}
-testing
prac.fnN(data = mtcars,
vars = cyl,
measure = wt)
# A tibble: 3 x 2
# cyl mean
# <dbl> <dbl>
#1 4.00 2.29
#2 6.00 3.12
#3 8.00 4.00
prac.fnN(data = mtcars,
vars = c(cyl),
measure = wt)
# A tibble: 3 x 2
# cyl mean
# <dbl> <dbl>
#1 4.00 2.29
#2 6.00 3.12
#3 8.00 4.00
prac.fnN(data = mtcars,
vars = c(cyl, am),
measure = wt)
# A tibble: 6 x 3
# Groups: cyl [?]
# cyl am mean
# <dbl> <dbl> <dbl>
#1 4.00 0 2.94
#2 4.00 1.00 2.04
#3 6.00 0 3.39
#4 6.00 1.00 2.76
#5 8.00 0 4.10
#6 8.00 1.00 3.37
In addition to the above methods, the natural option would be to pass the arguments as quos/quo
and then we don't have to think about enquo
and other if/else
prac.fnQ <- function(data, vars, measure) {
stopifnot(is_quosures(vars))
stopifnot(is_quosure(measure))
data %>%
select(!!! vars, !! measure) %>%
dplyr::group_by(!!! vars) %>%
dplyr::summarise(mean = mean(!! measure))
}
-testing
prac.fnQ(data = mtcars,
vars = quos(cyl, am),
measure = quo(wt))
# A tibble: 6 x 3
# Groups: cyl [?]
# cyl am mean
# <dbl> <dbl> <dbl>
#1 4.00 0 2.94
#2 4.00 1.00 2.04
#3 6.00 0 3.39
#4 6.00 1.00 2.76
#5 8.00 0 4.10
#6 8.00 1.00 3.37
If we also need to check whether the 'measure' variables (assuming that we have multiple 'measure' variables) are numeric
prac.fnQn <- function(data, vars, measure) {
stopifnot(is_quosures(vars))
stopifnot(is_quosures(measure))
data %>%
select(!!! vars, !!! measure) %>%
dplyr::group_by(!!! vars) %>%
summarise_if(is.numeric, mean)
}
prac.fnQn(data = mtcars,
vars = quos(cyl, am),
measure = quos(wt))
# A tibble: 6 x 3
# Groups: cyl [?]
# cyl am wt
# <dbl> <dbl> <dbl>
#1 4.00 0 2.94
#2 4.00 1.00 2.04
#3 6.00 0 3.39
#4 6.00 1.00 2.76
#5 8.00 0 4.10
#6 8.00 1.00 3.37
Upvotes: 2