Reputation: 516
There are 14 columns of data and approximately 1,011,052 rows. About ten rows are skipped when reading the CSV (with the error being: Error tokenizing data. C error: Expected 14 fields in line <...>, saw 15). Using data.apply(LabelEncoder().fit_transform)
to convert strings to floats for use in scikit-learn.fit(...)
. Use of data.apply(LabelEncoder().fit_transform)
is suggested here (https://stackoverflow.com/a/31939145/2178774). (Edit: Note that 670 is the first value.)
data = pd.read_csv('./dm.csv',error_bad_lines=False)
print(X.shape,y.shape)
(1011052, 13) (1011052, 1)
data.apply(LabelEncoder().fit_transform)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-18-9734848fb589> in <module>()
19 # y is now: array([2, 0, 1, 3, 2, 0, 1, 3])
20
---> 21 data.apply(LabelEncoder().fit_transform)
22 # TypeError: ("'>' not supported between instances of 'int' and 'str'", 'occurred at index 670')
23
/usr/lib64/python3.6/site-packages/pandas/core/frame.py in apply(self, func, axis, broadcast, raw, reduce, args, **kwds)
4358 f, axis,
4359 reduce=reduce,
-> 4360 ignore_failures=ignore_failures)
4361 else:
4362 return self._apply_broadcast(f, axis)
/usr/lib64/python3.6/site-packages/pandas/core/frame.py in _apply_standard(self, func, axis, ignore_failures, reduce)
4454 try:
4455 for i, v in enumerate(series_gen):
-> 4456 results[i] = func(v)
4457 keys.append(v.name)
4458 except Exception as e:
/usr/lib64/python3.6/site-packages/sklearn/preprocessing/label.py in fit_transform(self, y)
110 """
111 y = column_or_1d(y, warn=True)
--> 112 self.classes_, y = np.unique(y, return_inverse=True)
113 return y
114
/usr/lib64/python3.6/site-packages/numpy/lib/arraysetops.py in unique(ar, return_index, return_inverse, return_counts)
209
210 if optional_indices:
--> 211 perm = ar.argsort(kind='mergesort' if return_index else 'quicksort')
212 aux = ar[perm]
213 else:
TypeError: ("'>' not supported between instances of 'int' and 'str'", 'occurred at index 670')
Edit:
On read_csv
there is the following output:
/usr/lib/python3.6/site-packages/IPython/core/interactiveshell.py:2717: DtypeWarning: Columns (0) have mixed types. Specify dtype option on import or set low_memory=False.
interactivity=interactivity, compiler=compiler, result=result)
Edit:
Added dtype={...} to read_csv, which now results in the type error: TypeError: ("'>' not supported between instances of 'str' and 'int'", 'occurred at index 0')
.
data = pd.read_csv('./dm.csv',error_bad_lines=False,header=None,dtype={
0: np.dtype('u8'), # 64-bit unsigned integer
1: np.dtype('u4'), # 32-bit unsigned integer
2: np.dtype('U'), # unicode
3: np.dtype('U'), # unicode
4: np.dtype('U'), # unicode
5: np.dtype('U'), # unicode
6: np.dtype('u2'), # 16-bit unsigned integer
7: np.dtype('U'), # unicode
8: np.dtype('U'), # unicode
9: np.dtype('f2'), # 16-bit floating point
10:np.dtype('U'), # unicode
11:np.dtype('U'), # unicode
12:np.dtype('f4'), # 32-bit floating point
13:np.dtype('U') # unicode
})
Edit: The type error occurs when using two rows of data. It occurs in the eighth column. Row1 Column8 is "GHI789". Row2 Column8 is "NaN".
X = data.iloc[0:2,0:14]
print(X)
print('--------')
for col in X.columns:
print(col)
print(X.dtypes[col])
if X.dtypes[col] == "object":
le = LabelEncoder()
le.fit_transform(X[col])
X[col] = le.transform(X[col])
Output:
0 1 2 \
0 100 138.0 2017-12-31
1 101 13.0 2017-12-31
3 4 \
0 Title1 ABC123
1 Title2 ABC123
5 6 7 \
0 User1 0.0 DEF456
1 User2 0.0 DEF456
8 9 10 \
0 GHI789 0.0 XYZ123
1 NaN 0.0 XYZ123
11 12 13
0 Title11 0.0 NaN
1 Title22 0.0 NaN
--------
0
object
1
float64
2
object
3
object
4
object
5
object
6
float64
7
object
8
object
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-70-c94173863fd7> in <module>()
29 if X.dtypes[col] == "object":
30 le = LabelEncoder()
---> 31 le.fit_transform(X[col])
32 X[col] = le.transform(X[col])
/usr/lib64/python3.6/site-packages/sklearn/preprocessing/label.py in fit_transform(self, y)
110 """
111 y = column_or_1d(y, warn=True)
--> 112 self.classes_, y = np.unique(y, return_inverse=True)
113 return y
114
/usr/lib64/python3.6/site-packages/numpy/lib/arraysetops.py in unique(ar, return_index, return_inverse, return_counts)
209
210 if optional_indices:
--> 211 perm = ar.argsort(kind='mergesort' if return_index else 'quicksort')
212 aux = ar[perm]
213 else:
TypeError: '>' not supported between instances of 'float' and 'str'
Edit: Solution?: "NaN" mixed with strings is an issue. Solution is then to replace "NaN" with an empty string. Such as: data = data.replace(np.nan, '', regex=True)
.
Edit: Just noticed two issues with column 9. One: About two-hundred rows were empty string, causing str to float issue. Two: Another large set were the str "0", which was parsed as either an int or str, again causing str to float issue. In the second case, a fix is the perform the following: data[9] = data[9].replace('^0$', 0.0, regex=True)
.
Upvotes: 0
Views: 1685
Reputation: 1
I had the same problem but the solutions given did not get rid of the error. The solution I found was to convert the column to str: train[col] = train[col].astype('str') before applying the LabelEncoder. This makes everything the same type and removes the error. I don't even think you need to replace the NaNs.
Upvotes: 0
Reputation: 990
if train[col].dtype == 'object':
train[col] = train[col].fillna(train[col].mode().iloc[0])
You can fill this types of NaN value by replacing with the mean value in this colums. i think this will solve the error.
Upvotes: 1