Reputation: 43
I am working on creating a simple network graph and I'm having some issues getting my data into the right shape.
I have a Pandas DataFrame with two columns that contains information on collaboration between different entities. The column Project_ID lists the ID of the project and Participating_entity lists one entity that participated in the project. A project with 3 entities would take up 3 rows. Here is a simple sample DF listing collaborations between 3 entities on 3 projects:
df = pd.DataFrame([[1,'a'],[1,'b'],[2,'a'],[2,'c'],[3,'a'],[3,'b'],[3,'c']], columns = ['Project_ID','Participating_entity'])
#|---------------------|-------------------------|
#| Project_ID | Participating_entity |
#|---------------------|-------------------------|
#| 1 | A |
#| 1 | B |
#| 2 | A |
#| 2 | C |
#| 3 | A |
#| 3 | B |
#| 3 | C |
#|---------------------|-------------------------|
I would like to create a new DF that displays the number of collaborations between Participating_entity pairs. For the simple data above that would be.
#|-------------|-----------|--------------------|
#| Entity_1 | Entity_2 | Num_collaborations |
#|-------------|-----------|--------------------|
#| A | B | 2 |
#| A | C | 2 |
#| B | C | 1 |
#|-------------|-----------|--------------------|
A collaborated twice with each of B and C. B and C collaborated once. Collaborations should only be listed once. The connection between A and B for instance should only be listed under A-B and no row should exist for B-A.
Thanks in advance!
Upvotes: 4
Views: 557
Reputation: 210842
you can do it directly in NetworkX:
In [210]: G = nx.from_pandas_edgelist(df, 'Project_ID', 'Participating_entity')
In [211]: from networkx.algorithms import bipartite
In [212]: W = bipartite.weighted_projected_graph(G, df['Participating_entity'].unique())
In [213]: W.edges(data=True)
Out[213]: EdgeDataView([('a', 'c', {'weight': 2}), ('a', 'b', {'weight': 2}), ('b', 'c', {'weight': 1})])
Upvotes: 2
Reputation: 164673
One way is to use collections.defaultdict
combined with itertools.combinations
. There may be a pandas-specific way but this, by nature, will be library-specific.
from collections import defaultdict
from itertools import combinations
df_grouped = df.groupby('Project_ID')['Participating_entity'].apply(list).reset_index()
d = defaultdict(int)
for idx, row in df_grouped.iterrows():
for comb in combinations(row['Participating_entity'], 2):
d[frozenset(comb)] += 1
# defaultdict(int,
# {frozenset({'a', 'b'}): 2,
# frozenset({'a', 'c'}): 2,
# frozenset({'b', 'c'}): 1})
d = {tuple(sorted(k)): v for k, v in d.items()}
df_out = pd.DataFrame(list(d.items()))\
.rename(columns={0: 'Entities', 1: 'Num_collaborations'})
df_out = df_out.join(df_out['Entities'].apply(pd.Series))\
.drop('Entities', 1).rename(columns={0: 'Entity 1', 1: 'Entity 2'})
# Num_collaborations Entity 1 Entity 2
# 0 2 a b
# 1 2 a c
# 2 1 b c
Upvotes: 0