Reputation: 105
I have a pandas groupby object that I made from a larger dataframe, in which amounts are grouped under a person ID variable as well as whether it was an ingoing or outgoing transaction. Heres an example:
ID In_Out Amount
1 In 5
1 Out 8
2 In 4
2 Out 2
3 In 3
3 Out 9
4 Out 8
(sorry I don't know how to put actual sample data in). Note that some folks can have one or the other (e.g., maybe they have some going out but nothing coming in).
All I want to go is get the difference in the amounts, collapsed under the person. So the ideal output would be, perhaps a dictionary or other dataframe, containing the difference in amounts under each person, like this:
ID Difference
1 -3
2 2
3 -6
4 -8
I have tried a handful of different ways to do this but am not sure how to work with these nested lists in python.
Thanks!
Upvotes: 1
Views: 59
Reputation: 18916
We couold select the rows that are Out and convert them to negative integers and then use sum().
import pandas as pd
s = '''\
ID In_Out Amount
1 In 5
1 Out 8
2 In 4
2 Out 2
3 In 3
3 Out 9
4 Out 8'''
# Recreate dataframe
df = pd.read_csv(pd.compat.StringIO(s), sep='\s+')
# Select rows where In_Out == 'Out' and multiple by -1
df.loc[df['In_Out'] == 'Out', 'Amount'] *= -1
# Convert to dict
d = df.groupby('ID')['Amount'].sum().to_dict()
print(d)
Returns:
{1: -3, 2: 2, 3: -6, 4: -8}
Upvotes: 1