Reputation: 13401
I have a dataframe with unique value in each columns:
df1 = pd.DataFrame([["Phys","Shane","NY"],["Chem","Mark","LA"],
["Maths","Jack","Mum"],["Bio","Sam","CT"]],
columns = ["cls1","cls2","cls3"])
print(df1)
cls1 cls2 cls3
0 Phys Shane NY
1 Chem Mark LA
2 Maths Jack Mum
3 Bio Sam CT
And a list l1:
l1=["Maths","Bio","Shane","Mark"]
print(l1)
['Maths', 'Bio', 'Shane', 'Mark']
Now I want to retrieve a columns from dataframe that contains elements from list and list of elements.
Expected Output:
{'cls1' : ['Maths','Bio'], 'cls2': ['Shane','Mark']}
The code I have:
cls = []
for cols in df1.columns:
mask = df1[cols].isin(l1)
if mask.any():
cls.append(cols)
print(cls)
The output of above code:
['cls1', 'cls2']
I'm struggling to get common elements from dataframe and list to convert it into dictionary.
Any suggestions are welcome.
Thanks.
Upvotes: 1
Views: 54
Reputation: 862511
Use DataFrame.isin
for mask, replace non match values by indexing and reshape with stack
:
df = df1[df1.isin(l1)].stack()
print (df)
0 cls2 Shane
1 cls2 Mark
2 cls1 Maths
3 cls1 Bio
dtype: object
Last create list by dict comprehension
:
d = {k:v.tolist() for k,v in df.groupby(level=1)}
print(d)
{'cls2': ['Shane', 'Mark'], 'cls1': ['Maths', 'Bio']}
Another solution:
d = {}
for cols in df1.columns:
mask = df1[cols].isin(l1)
if mask.any():
d[cols] = df1.loc[mask, cols].tolist()
print(d)
{'cls2': ['Shane', 'Mark'], 'cls1': ['Maths', 'Bio']}
Upvotes: 2