Reputation: 28675
Why are prediction_me
and prediction_R
not equal? I'm attempting to follow the formula given by Lemma 5 here. Does the predict
function use a different formula, have I made a mistake in my computation somewhere, or is it just rounding error? (the two are pretty close)
set.seed(100)
# genrate data
x <- rnorm(100, 10)
y <- 3 + x + rnorm(100, 5)
data <- data.frame(x = x, y = y)
# fit model
mod <- lm(y ~ x, data = data)
# new observation
data2 <- data.frame(x = rnorm(5, 10))
# prediction for new observation
d <- as.matrix(cbind(1, data[,-2]))
d2 <- as.matrix(cbind(1, data2))
fit <- d2 %*% mod$coefficients
t <- qt(1 - .025, mod$df.residual)
s <- summary(mod)$sigma
half <- as.vector(t*s*sqrt(1 + d2%*%solve(t(d)%*%d, t(d2))))
prediction_me <- cbind(fit, fit - half, fit + half)
prediction_R <- predict(mod, newdata = data2, interval = 'prediction')
prediction_me
prediction_R
Upvotes: 1
Views: 224
Reputation: 48191
Your current code is almost fine. Just note that the formula in Lemma 5 is for a single newly observed x
. For this reason, half
contains not only relevant variances but also covariances, while you only need the former ones. Thus, as.vector
should be replaced with diag
:
half <- diag(t * s * sqrt(1 + d2 %*% solve(t(d) %*%d , t(d2))))
prediction_me <- cbind(fit, fit - half, fit + half)
prediction_R <- predict(mod, newdata = data2, interval = 'prediction')
range(prediction_me - prediction_R)
# [1] 0 0
Upvotes: 2