Reputation: 3
#include <iostream>
class Box{
public:
int x;
Box(){
x=0;
std::cout << "Constructor" << std::endl;
}
Box(const Box& other){
x = other.x;
std::cout << "Copy constructor" << std::endl;
}
Box(Box&& other){
x = other.x;
other.x = 0;
std::cout << "Move constructor" << std::endl;
}
Box& operator=(Box&& other) {
x = other.x;
other.x = 0;
std::cout << "Move assignment" << std::endl;
return *this;
}
Box& operator=(const Box &other){
x = other.x;
std::cout << "Copy assignment" << std::endl;
}
~Box(){
std::cout << "Destructor" << std::endl;
x=0;
}
};
Box send(Box b){
std::cout << "Sending" << std::endl;
return b;
}
int main(){
Box b1, b2;
b1 = send(b2);
return 0;
}
In the output:
Constructor
Constructor
Copy Constructor
Sending
Move Constructor
Move Assignment
Destructor
Destructor
Destructor
Destructor
I'm not too sure why a move constructor then assignment was used when doing b1 = send(b2)
.
Upvotes: 0
Views: 80
Reputation: 5693
Why is the move constructor/assignment called when setting an object equal to the return value of another function
Your send
function returns b
that is a parameter, not a local variable:
Box send(Box b) {
std::cout << "Sending" << std::endl;
return b; // b is a parameter
}
So there is no RVO optimization occuring, because returning a parameter disables RVO.
Meanwhile, there's another optimization option available, an implicit std::move
:
Box send(Box b) {
std::cout << "Sending" << std::endl;
return std::move(b); // implicit std::move is applied.
}
So it's constructed, using your move constructor:
Box(Box&& other);
You'll see no move construction if you create and return a local variable c
instead:
Box send(Box b) {
Box c;
std::cout << "Sending" << std::endl;
return c; // Returns c, not b -> No move construction thanks to RVO
}
because RVO then jumps in.
Upvotes: 1
Reputation: 66431
It's move-constructing the return value from the parameter b
, then that return value is move-assigned to b1
.
Upvotes: 1