Reputation: 23
I have a text file with the below data having no particular format
abc*123 *180109*1005*^*001*0000001*0*T*:~
efg*05*1*X*005010X2A1~
k7*IT 1234*P*234df~
hig*0109*10052200*Rq~
abc*234*9698*709870*99999*N:~
tng****MI*917937861~
k7*IT 8876*e*278df~
dtp*D8*20171015~
I want the output as two files as below :
Based on string abc
, I want to split the file.
file 1:
abc*123 *180109*1005*^*001*0000001*0*T*:~
efg*05*1*X*005010X2A1~
k7*IT 1234*P*234df~
hig*0109*10052200*Rq~
file 2:
abc*234*9698*709870*99999*N:~
tng****MI*917937861~
k7*IT 8876*e*278df~
dtp*D8*20171015~
And the file names should be IT name(the line starts with k7) so file1 name should be IT_1234 second file name should be IT_8876.
Upvotes: 1
Views: 2713
Reputation: 41957
You can benefit from sparkContext's wholeTextFiles
function to read the file. Then parse it to separate the strings ( here I have used ####
as distinct combination of characters that won't repeat in the text)
val rdd = sc.wholeTextFiles("path to the file")
.flatMap(tuple => tuple._2.replace("\r\nabc", "####abc").split("####")).collect()
And then loop the array to save the texts to output
for(str <- rdd){
//saving codes here
}
Upvotes: 0
Reputation: 1553
There is this little dirty trick that I used for a project :
sc.hadoopConfiguration.set("textinputformat.record.delimiter", "abc")
You can set the delimiter of your spark context for reading files. So you could do something like this :
val delimit = "abc"
sc.hadoopConfiguration.set("textinputformat.record.delimiter", delimit)
val df = sc.textFile("your_original_file.txt")
.map(x => (delimit ++ x))
.toDF("delimit_column")
.filter(col("delimit_column") !== delimit)
Then you can map each element of your DataFrame (or RDD) to be written to a file.
It's a dirty method but it might help you !
Have a good day
PS : The filter at the end is to drop the first line which is empty with the concatenated delimiter
Upvotes: 3