Reputation: 49
I've used NLTK to pos_tag sentences in a pandas dataframe from an old Yelp competition. This returns a list of tuples (word, POS). I'd like to count the number of parts of speech for each instance. How would I, say, create a function to count the number of being verbs in each review? I know how to apply functions to features - no problem there. I just can't wrap my head around how to count things inside tuples inside lists inside a pd feature.
The head is here, as a tsv: https://pastebin.com/FnnBq9rf
Upvotes: 1
Views: 1295
Reputation: 320
As an example, for dataframe df, noun count of the column "reviews" can be saved to a new column "noun_count" using this code.
def NounCount(x):
nounCount = sum(1 for word, pos in pos_tag(word_tokenize(x)) if pos.startswith('NN'))
return nounCount
df["noun_count"] = df["reviews"].apply(NounCount)
df.to_csv('./dataset.csv')
Upvotes: 1
Reputation: 49
Thank you @zhangyulin for your help. After two days, I learned some incredibly important things (as a novice programmer!). Here's the solution!
def NounCounter(x):
nouns = []
for (word, pos) in x:
if pos.startswith("NN"):
nouns.append(word)
return nouns
df["nouns"] = df["pos_tag"].apply(NounCounter)
df["noun_count"] = df["nouns"].str.len()
Upvotes: 1
Reputation: 9018
There are a number of ways you can do that and one very straight forward way is to map the list (or pandas series) of tuples to indicator of whether the word is a verb, and count the number of 1's you have.
Assume you have something like this (please correct me if it's not, as you didn't provide an example):
a = pd.Series([("run", "verb"), ("apple", "noun"), ("play", "verb")])
You can do something like this to map the Series and sum the count:
a.map(lambda x: 1 if x[1]== "verb" else 0).sum()
This will return you 2
.
I grabbed a sentence from the link you shared:
text = nltk.word_tokenize("My wife took me here on my birthday for breakfast and it was excellent.")
tag = nltk.pos_tag(text)
a = pd.Series(tag)
a.map(lambda x: 1 if x[1]== "VBD" else 0).sum()
# this returns 2
Upvotes: 0