Reputation: 3012
I am working with school schedule data and I have to differentiate different sessions of the same course.
If a different class has the same course, this is in effect another session of the same course and needs to be differentiated. This means having an extra column with a session index.
import pandas as pd
cols = ['course', 'class_name', 'professor']
data = [ ['Math', 'X', 'Bob'],
['Math', 'X', 'Bob'],
['Math', 'Y', 'Bob'],
['English', 'Y', 'Tim'],
['English', 'X', 'Jim'],
['English', 'X', 'Jim'],
]
df = pd.DataFrame(columns=cols, data=data)
# Add session
df['session'] = '?'
print(df)
The result should be something like this.
course class_name professor session
0 Math X Bob 0
1 Math X Bob 0
2 Math Y Bob 1
3 Eng. Y Tim 1
4 Eng. X Jim 0
5 Eng. X Jim 0
I have come up with a convoluted procedural solution, what would be a more pandas
way of doing this?
groups = df.groupby(['course', 'class_name'])
d_sessions = {}
counter = 0
pclass = ""
pcourse = ""
for m_idx in list(groups.groups):
course = m_idx[0]
class_ = m_idx[1]
if class_ != pclass:
counter += 1
if pcourse != course:
counter = 0
pclass = class_
pcourse = course
d_sessions[m_idx] = counter
df.set_index(['course', 'class_name'], inplace=True)
for k, v in d_sessions.items():
df.set_value(col='index', value=v, index=k)
df.reset_index(inplace=True)
df
Upvotes: 3
Views: 1703
Reputation: 153500
Let's try:
df['session'] = df.groupby('course')['class_name'].transform(lambda x: (~x.duplicated()).cumsum())
Output:
course class_name professor session
0 Math X Bob 1
1 Math X Bob 1
2 Math Y Bob 2
3 English Y Tim 1
4 English X Jim 2
5 English X Jim 2
Upvotes: 3
Reputation: 649
interesting question.
Try making a map with all the unique combinations and their session number.
Import data in df (note that I added some rows to validate my solution):
import pandas as pd
cols = ['course', 'class_name', 'professor']
data = [ ['Math', 'X', 'Bob'],
['Math', 'X', 'Bob'],
['Math', 'X', 'Bob'],
['Math', 'Y', 'Bob'],
['English', 'Y', 'Tim'],
['English', 'X', 'Jim'],
['English', 'X', 'Jim'],
['English', 'Z', 'Mark'],
['Chinese', 'X', 'Mark'],
['Chinese', 'X', 'Mark'],
['Chinese', 'F', 'Mark'],
]
df = pd.DataFrame(columns=cols, data=data)
Then create a map for every unique course-class combination and give them session numbers. The way I'm doing this, is slicing the frame by course and then find the unique class values for this course. Then create a unique name for each combination and give each session a unique session number (for every course). Then overlay the session column with the dictionary:
def sol():
map = {}
for item in df.course.unique():
slice = df[df['course'] == item]
mapslice = dict(zip(item + slice.class_name.unique(),
list(range(len(slice.class_name.unique())))))
map.update(mapslice)
df['session'] = (df.course + df.class_name).map(map)
return df
This returns for the sample data:
course class_name professor session
0 Math X Bob 0
1 Math X Bob 0
2 Math X Bob 0
3 Math Y Bob 1
4 English Y Tim 0
5 English X Jim 1
6 English X Jim 1
7 English Z Mark 2
8 Chinese X Mark 0
9 Chinese X Mark 0
10 Chinese F Mark 1
Then a quick performance check:
%timeit sol()
3.66 ms ± 44 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Compared to your solution (here called ori):
%timeit ori()
4.4 ms ± 10.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Thanks for letting me know if this answer was helpful.
Upvotes: 1