Reputation: 151
I am trying to make an overlapping histogram like this:
ggplot(histogram, aes = (x), mapping = aes(x = value)) +
geom_histogram(data = melt(tpm_18_L_SD), breaks = seq(1,10,by = 1),
aes(y = 100*(..count../sum(..count..))), alpha=0.2) +
geom_histogram(data = melt(tpm_18_S_SD), breaks = seq(1,10,by = 1),
aes(y = 100*(..count../sum(..count..))), alpha=0.2) +
geom_histogram(data = melt(tpm_18_N_SD), breaks = seq(1,10,by = 1),
aes(y = 100*(..count../sum(..count..))), alpha=0.2) +
facet_wrap(~variable, scales = 'free_x') +
ylim(0, 20) +
ylab("Percentage of Genes") +
xlab("Standard Deviation")
My code can only make them plot side by side and I would like to also make them overlap. Thank you! I based mine off of the original post where this came from but it did not work for me. It was originally 3 separate graphs which I combined with grid and ggarrange. It looks like this right now.
Here is the code of the three separate graphs.
SD_18_L <- ggplot(data = melt(tpm_18_L_SD), mapping = aes(x = value)) +
geom_histogram(aes(y = 100*(..count../sum(..count..))), breaks = seq(1, 10, by = 1)) +
facet_wrap(~variable, scales = 'free_x') +
ylim(0, 20) +
ylab("Percentage of Genes") +
xlab("Standard Deviation")
SD_18_S <- ggplot(data = melt(tpm_18_S_SD), mapping = aes(x = value)) +
geom_histogram(aes(y = 100*(..count../sum(..count..))), breaks = seq(1, 10, by = 1)) +
facet_wrap(~variable, scales = 'free_x') +
ylim(0, 20) +
ylab("Percentage of Genes") +
xlab("Standard Deviation")
SD_18_N <- ggplot(data = melt(tpm_18_N_SD), mapping = aes(x = value)) +
geom_histogram(aes(y = 100*(..count../sum(..count..))), breaks = seq(1, 10, by = 1)) +
facet_wrap(~variable, scales = 'free_x') +
ylim(0, 20) +
ylab("Percentage of Genes") +
xlab("Standard Deviation")
Upvotes: 3
Views: 3737
Reputation: 16842
ggplot
expects dataframes in a long format. I'm not sure what your data looks like, but you shouldn't have to call geom_histogram
for each category. Instead, get all your data into a single dataframe (you can use rbind
for this) in long format (what you're doing already with melt
) first, then feed it into ggplot
and map fill to whatever your categorical variable is.
Your call to facet_wrap
is what puts them in 3 different plots. If you want them all on the same plot, take that line out.
An example using the iris data:
ggplot(iris, aes(x = Sepal.Length, fill = Species)) +
geom_histogram(alpha = 0.6, position = "identity")
I decreased alpha in geom_histogram
so you can see where colors overlap, and added position = "identity"
so observations aren't being stacked. Hope that helps!
Upvotes: 3