Reputation: 1105
Given a spark connection sc
iris_spk <- copy_to(sc, iris)
Next I'll take a silly example for spark_apply
iris_spk %>%
spark_apply(
function(x) {
data.frame(A=c("a", "b", "c"), B=c(1, 2, 3))
},
group_by = "Species",
columns = c("A", "B"),
packages = FALSE
)
# # Source: table<sparklyr_tmp_3e96258604cd> [?? x 3]
# # Database: spark_connection
# Species A B
# <chr> <chr> <dbl>
# 1 versicolor a 1.00
# 2 versicolor b 2.00
# 3 versicolor c 3.00
# 4 virginica a 1.00
# 5 virginica b 2.00
# 6 virginica c 3.00
# 7 setosa a 1.00
# 8 setosa b 2.00
# 9 setosa c 3.00
So far, so good. However https://stackoverflow.com/a/46410425/1785752 suggests that I can improve performance by specifying an output schema instead of just output column names. So I tried:
iris_spk %>%
spark_apply(
function(x) {
data.frame(A=c("a", "b", "c"), B=c(1, 2, 3))
},
group_by = "Species",
columns = list(A="character",
B="numeric"),
packages = FALSE
)
But then things go wrong:
Error: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 26.0 failed 4 times, most recent failure: Lost task 1.3 in stage 26.0 (TID 133, ml-dn38.mitre.org, executor 3): java.lang.RuntimeException: Error while encoding: java.lang.RuntimeException: java.lang.String is not a valid external type for schema of double
if (assertnotnull(input[0, org.apache.spark.sql.Row, true]).isNullAt) null else staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 0, A), StringType), true) AS A#256
if (assertnotnull(input[0, org.apache.spark.sql.Row, true]).isNullAt) null else validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 1, B), DoubleType) AS B#257
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:290)
at org.apache.spark.sql.SparkSession$$anonfun$3.apply(SparkSession.scala:581)
at org.apache.spark.sql.SparkSession$$anonfun$3.apply(SparkSession.scala:581)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409) at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
... and so on
Am I specifying the schema incorrectly?
Upvotes: 1
Views: 355
Reputation: 1105
Ah! I think that the group_by
column does not inherit it's schema from the input data frame, but needs to be declared along with the rest. I just tried
iris_spk %>%
spark_apply(
function(x) {
data.frame(A=c("a", "b", "c"), B=c(1, 2, 3))
},
group_by = "Species",
columns = list(Species="character",
A="character",
B="numeric"),
packages = FALSE
)
which worked (same result as the first try above)
Upvotes: 3