Reputation: 179
Here is the example of the data set to be calculated the correlation between O_data and possible multiple combinations of M_data.
O_data=runif(10)
M_a=runif(10)
M_b=runif(10)
M_c=runif(10)
M_d=runif(10)
M_e=runif(10)
M_data=data.frame(M_a,M_b,M_c,M_d,M_e)
I can calculate the correlation between O_data and individual M_data data.
correlation= matrix(NA,ncol = length(M_data[1,]))
for (i in 1:length(correlation))
{
correlation[,i]=cor(O_data,M_data[,i])
}
In addition to this, how can I get the correlation between O_data and possible multiple combinations of M_data set?
let's clarify the combination.
cor_M_ab=cor((M_a+M_b),O_data)
cor_M_abc=cor((M_a+M_b+M_c),O_data)
cor_M_abcd=...
cor_M_abcde=...
...
....
cor_M_bcd=..
..
cor_M_eab=...
....
...
I don't want combinations of M_a and M_c, I want the combination on a continuous basis, like, M_ab, or bc,bcd,abcde,ea,eab........
Upvotes: 0
Views: 208
Reputation: 2589
Generate the data using set.seed
so you can reproduce:
set.seed(42)
O_data=runif(10)
M_a=runif(10)
M_b=runif(10)
M_c=runif(10)
M_d=runif(10)
M_e=runif(10)
M_data=data.frame(M_a,M_b,M_c,M_d,M_e)
The tricky part is just keeping things organized. Since you didn't specify, I made a matrix with 5 rows and 31 columns. The rows get the names of the variables in your M_data
. Here's the matrix (motivated by: All N Combinations of All Subsets)
M_grid <- t(do.call(expand.grid, replicate(5, 0:1, simplify = FALSE))[-1,])
rownames(M_grid) <- names(M_data)
M_grid
#> 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
#> M_a 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
#> M_b 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
#> M_c 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
#> M_d 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1
#> M_e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
#> 28 29 30 31 32
#> M_a 1 0 1 0 1
#> M_b 1 0 0 1 1
#> M_c 0 1 1 1 1
#> M_d 1 1 1 1 1
#> M_e 1 1 1 1 1
Now when I do a matrix multiplication of M_data
and any column of my M_grid
I get a sum of the columns in M_data
corresponding to which rows of M_grid
have 1's. For example:
as.matrix(M_data) %*% M_grid[,4]
gives me the sum of M_a
and M_b
. I can calculate the correlation between O_data
and any of these sums. Putting it all together in one line:
(final <- cbind(t(M_grid), apply(as.matrix(M_data) %*% M_grid, 2, function(x) cor(O_data, x))))
#> M_a M_b M_c M_d M_e
#> 2 1 0 0 0 0 0.066499681
#> 3 0 1 0 0 0 -0.343839423
#> 4 1 1 0 0 0 -0.255957896
#> 5 0 0 1 0 0 0.381614222
#> 6 1 0 1 0 0 0.334916617
#> 7 0 1 1 0 0 0.024198743
#> 8 1 1 1 0 0 0.059297654
#> 9 0 0 0 1 0 0.180676146
#> 10 1 0 0 1 0 0.190656099
#> 11 0 1 0 1 0 -0.140666930
#> 12 1 1 0 1 0 -0.094245439
#> 13 0 0 1 1 0 0.363591787
#> 14 1 0 1 1 0 0.363546012
#> 15 0 1 1 1 0 0.111435827
#> 16 1 1 1 1 0 0.142772457
#> 17 0 0 0 0 1 0.248640472
#> 18 1 0 0 0 1 0.178471959
#> 19 0 1 0 0 1 -0.117930168
#> 20 1 1 0 0 1 -0.064838097
#> 21 0 0 1 0 1 0.404258155
#> 22 1 0 1 0 1 0.348609692
#> 23 0 1 1 0 1 0.114267433
#> 24 1 1 1 0 1 0.131731971
#> 25 0 0 0 1 1 0.241561478
#> 26 1 0 0 1 1 0.229693510
#> 27 0 1 0 1 1 0.001390233
#> 28 1 1 0 1 1 0.030884234
#> 29 0 0 1 1 1 0.369212761
#> 30 1 0 1 1 1 0.354971839
#> 31 0 1 1 1 1 0.166132390
#> 32 1 1 1 1 1 0.182368955
The final column is the correlation of O_data
with all 31 possible sums of columns in M_data
. You can tell which column is included by seeing which has a 1
under it for that row.
I try not to resort to matrices too much but this was the first thing I thought of.
Upvotes: 1