Reputation: 2336
I'm using nested GridSpecFromSubplotSpec
to create a nested grid of axes. I have two independent set of axes, a top one and a bottom one. Each set has four axes, arranged in a 2x2 grid.
Here is the code I'm using and the result I obtain:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gsp
fig = plt.figure()
global_gsp = gsp.GridSpec(2, 1)
for i in range(2):
axes = np.empty(shape=(2, 2), dtype=object)
local_gsp = gsp.GridSpecFromSubplotSpec(2, 2, subplot_spec=global_gsp[i])
for j in range(2):
for k in range(2):
ax = plt.Subplot(fig, local_gsp[j, k],
sharex=axes[0, 0], sharey=axes[0, 0])
fig.add_subplot(ax)
axes[j, k] = ax
for j in range(2):
for k in range(2):
ax = axes[j, k]
x = i + np.r_[0:1:11j]
y = 10*i + np.random.random(11)
ax.plot(x, y, color=f'C{i}')
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()
As you can see, the top set has blue lines, the bottom set has orange lines, and the blue lines are well represented with the limits [0, 1]x[0, 1]
, while the orange lines are represented with the limits [1, 2]x[10, 11]
. When I create the subplots with plt.Subplot
, I use the sharex
and sharey
arguments to have exactly the same scale on all four axes in each set (but different scale across different sets).
I would like to aviod the repetition of the label and the ticks of each axis. How can I achieve that?
Upvotes: 4
Views: 5965
Reputation: 40667
Subplot axes have functions is_{first,last}_{col,row}()
(although I could not find the documentation anywhere) as shown in this matplotlib tutorial. These functions are useful to only print the label(s) and/or ticks in the right spot. To hide the tick labels, shared_axis_demo.py recommends using setp(ax.get_{x,y}ticklabels(), visible=False)
fig = plt.figure()
global_gsp = gs.GridSpec(2, 1)
for i in range(2):
axes = np.empty(shape=(2, 2), dtype=object)
local_gsp = gs.GridSpecFromSubplotSpec(2, 2, subplot_spec=global_gsp[i])
for j in range(2):
for k in range(2):
ax = plt.Subplot(fig, local_gsp[j, k],
sharex=axes[0, 0], sharey=axes[0, 0])
fig.add_subplot(ax)
axes[j, k] = ax
for j in range(2):
for k in range(2):
ax = axes[j, k]
x = i + np.r_[0:1:11j]
y = 10*i + np.random.random(11)
ax.plot(x, y, color=f'C{i}')
#
# adjust axes and tick labels here
#
if ax.is_last_row():
ax.set_xlabel('x')
else:
plt.setp(ax.get_xticklabels(), visible=False)
if ax.is_first_col():
ax.set_ylabel('y')
else:
plt.setp(ax.get_yticklabels(), visible=False)
fig.tight_layout()
plt.show()
Upvotes: 7