Reputation: 81
My code is:
val lines = KafkaUtils.createStream(ssc, "localhost:2181", "spark-streaming-consumer-group", Map("hello" -> 5))
val data=lines.map(_._2)
data.print()
My output has 50 different values in a format as below
{"id:st04","data:26-02-2018 20:30:40","temp:30", "press:20"}
Can anyone help me in storing this data in a table form as
| id |date |temp|press|
|st01|26-02-2018 20:30:40| 30 |20 |
|st01|26-02-2018 20:30:45| 80 |70 |
I will really appreciate.
Upvotes: 1
Views: 6056
Reputation: 16096
You can use foreachRDD function, together with normal Dataset API:
data.foreachRDD(rdd => {
// rdd is RDD[String]
// foreachRDD is executed on the driver, so you can use SparkSession here; spark is SparkSession, for Spark 1.x use SQLContext
val df = spark.read.json(rdd); // or sqlContext.read.json(rdd)
df.show();
df.write.saveAsTable("here some unique table ID");
});
However, if you use Spark 2.x, I would suggest to use Structured Streaming:
val stream = spark.readStream.format("kafka").load()
val data = stream
.selectExpr("cast(value as string) as value")
.select(from_json(col("value"), schema))
data.writeStream.format("console").start();
You must manually specify schema, but it's quite simple :) Also import org.apache.spark.sql.functions._
before any processing
Upvotes: 5