Reputation: 83
I am trying to fit Gaussian function to my Python plot. I have attached the code here. Any corrections would be appreciated!
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import math
import random
from numpy import genfromtxt
data= genfromtxt ('PVC_Cs137.txt')
plt.xlim(0,2500)
plt.ylim(0,30000)
plt.xlabel("Channel number")
plt.ylabel("Counts")
x = data[:,0]
y = data[:,1]
n = len(x)
mean = sum(x*y)/n
sigma = sum(y*(x-mean)**2)/n
def gaus(x,a,x0,sigma):
return a*exp(-(x-x0)**2/(2*sigma**2))
popt,pcov = curve_fit(gaus,x,y,p0=[1,mean,sigma])
plt.plot(x,gaus(x,*popt))
plt.show()
And here is the link to my file: https://www.dropbox.com/s/hrqjr2jgfsjs55x/PVC_Cs137.txt?dl=0
Upvotes: 1
Views: 1133
Reputation: 12410
There are two problems with your approach. One is related to programming. The gauss
fit function has to work with a numpy
array. math
functions can't provide this functionality, they work with scalars. Therefore your fit functions should look like this
def gauss(x, a, x0, sigma):
return a * np.exp(-(x - x0) ** 2 / (2 * sigma ** 2))
This produces with the right mean/sigma combination a Gauss curve like this
And now we look at the distribution of the values from your file:
This doesn't even vaguely look like a Gauss curve. No wonder that the fit function doesn't converge.
Actually there is a third problem, your calculation of mean/sigma is wrong, but since you can't fit your data to a Gaussian distribution, we can neglect this problem for now.
Upvotes: 2