Reputation: 1801
I'm pretty much new to python so please except typos and all.
I am trying to add the new column in data frame based on the certain condition of the different column. so instead of returning values, it is returning a string which I'm just passing.
I don't know why it's happening and how to get rid of from that.
screenenter image description hereshot attached.
vdx_access_table["Delivered_Engagements"]=vdx_access_table["Delivered_Engagements"].astype(int)
vdx_access_table["Delivered_Impressions"]=vdx_access_table["Delivered_Impressions"].astype(int)
choices_vdx_eng = vdx_access_table["Delivered_Engagements"]/vdx_access_table["BOOKED_IMP#BOOKED_ENG"]
choices_vdx_cpcv = vdx_access_table["Delivered_Impressions"]/vdx_access_table["BOOKED_IMP#BOOKED_ENG"]
vdx_access_table['Delivery%']=[choices_vdx_eng if x=='CPE' or x=='CPE+' else choices_vdx_cpcv for x in
vdx_access_table['COST_TYPE']]
Upvotes: 1
Views: 156
Reputation: 862511
Use numpy.where
with condition by isin
:
choices_vdx_eng=vdx_access_table["Delivered_Engagements"]/vdx_access_table['BOOKED_IMP#BOOKED_ENG']
choices_vdx_imp=vdx_access_table["Delivered_Impressions"]/vdx_access_table['BOOKED_IMP#BOOKED_ENG']
mask = vdx_access_table['COST_TYPE'].isin(['CPE','CPE+'])
vdx_access_table['Delivery%']= np.where(mask, choices_vdx_eng, choices_vdx_imp )
Or:
mask = vdx_access_table['COST_TYPE'].isin(['CPE','CPE+'])
vdx_access_table['Delivery%']= np.where(mask,
vdx_access_table["Delivered_Engagements"],
vdx_access_table["Delivered_Impressions"]) /vdx_access_table['BOOKED_IMP#BOOKED_ENG']
EDIT:
df = pd.DataFrame({'Delivered_Engagements':[10,20,30,40,50],
'Delivered_Impressions':[5,4,8,7,3],
'BOOKED_IMP#BOOKED_ENG':[3,2,0,4,2],
'COST_TYPE':['CPE','CPE+','CPM','CPCV','AAA']})
df["Delivered_Engagements"]=df["Delivered_Engagements"].astype(int)
df["Delivered_Impressions"]=df["Delivered_Impressions"].astype(int)
eng = df["Delivered_Engagements"]/df["BOOKED_IMP#BOOKED_ENG"]
cpcv = df["Delivered_Impressions"]/df["BOOKED_IMP#BOOKED_ENG"]
mask1 = df["COST_TYPE"].isin(['CPE','CPE+'])
mask2 = df["COST_TYPE"].isin(['CPM','CPCV'])
df['Delivery%']=np.select([mask1, mask2], [eng, cpcv], default=0)
df['Delivery%']=df['Delivery%'].replace(np.inf,0)
print (df)
BOOKED_IMP#BOOKED_ENG COST_TYPE Delivered_Engagements \
0 3 CPE 10
1 2 CPE+ 20
2 0 CPM 30
3 4 CPCV 40
4 2 AAA 50
Delivered_Impressions Delivery%
0 5 3.333333
1 4 10.000000
2 8 0.000000
3 7 1.750000
4 3 0.000000
Upvotes: 1