Reputation:
I want to study a charged particle's motion while travelling through a magnetic field by modelling it with Python. I tried to use odeint function from scipy.integrate and it doesn't seem to work as I expected. Here is what I expected given the initial condition:
But here is what I got with my simulation:
The problem comes from my implementation of the odeint function. Any help is apreciated.
Here is my code:
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from mpl_toolkits.mplot3d import Axes3D
def vect_prod(u, v):
return np.array([u[1] * v[2] - u[2] * v[1], u[2] * v[0] - u[0] * v[2], u[0] * v[1] - u[1] * v[0]])
def dy(y, t):
x1, Vx, y1, Vy, z1, Vz = y
F = q * (E + vect_prod(np.array([Vx, Vy, Vz]), B))
dy = [Vx, Vx - F[0] / m, Vy, Vy - F[1] / m, Vz, Vz - F[2] / m]
return dy
E = np.array([0, 0, 0])
B = np.array([0, 0, 1])
q = 1
m = 1
a = 0.04
cond = [0, 1, 0, 1, 0, 1]
t = np.arange(0, 100, 0.1)
sol = odeint(dy, cond, t)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
plt.plot(sol[:, 0], sol[:, 2], sol[:, 4])
plt.show()
Any help will be appreciated!
Upvotes: 1
Views: 504
Reputation: 97291
I think the mass is too large:
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from mpl_toolkits.mplot3d import Axes3D
def vect_prod(u, v):
return np.array([u[1] * v[2] - u[2] * v[1], u[2] * v[0] - u[0] * v[2], u[0] * v[1] - u[1] * v[0]])
def dy(y, t):
x1, Vx, y1, Vy, z1, Vz = y
F = q * (E + vect_prod(np.array([Vx, Vy, Vz]), B))
dy = [Vx, Vx - F[0] / m, Vy, Vy - F[1] / m, Vz, Vz - F[2] / m]
return dy
E = np.array([0, 0, 0])
B = np.array([0, 0, 1])
q = 1
m = 0.001
a = 0.04
cond = [0, 1, 0, 1, 0, 1]
t = np.arange(0, 0.05, 0.0001)
sol = odeint(dy, cond, t)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
plt.plot(sol[:, 0], sol[:, 2], sol[:, 4])
plt.show()
the output:
Upvotes: 1