Reputation: 27
Hi so bascially lets say I have a network(A) and I want to find the betweeness centrality of it.
I used: centr_betw(graph, directed = FALSE, normalized = TRUE)
This returned every node with the value:
[1] 1.827102e+04 3.554450e+04 5.000000e-01 9.524383e+04
[5] 0.000000e+00 0.000000e+00 1.078184e+05 4.768125e+04
I really want to know what these numbers mean.
It also shows the between centralization of the whole network and a max value. Lets say the network(A) as a whole has a betweenness centrality of 0.04. What can you say about this network(A) when it is compared to a random network with a betweeness centrality of 0.001?
MUCH THANKS GUYS
Upvotes: 1
Views: 376
Reputation: 48251
Quite a bit of information can be found simply if you type ?centr_betw
. In particular, centr_betw
returns a list of three components: res
, centralization
, theoretical_max
.
Each element of res
is the betweenness centrality of a corresponding vertex i computed in this manner. Specifically, given a shortest path between some vertices j and k (not equal to i), i is considered to be more central if this shortest path includes i. Going over all possible pairs of j and k we can find this betweenness centrality of i.
Further, centralization
and theoretical_max
concern the Freeman centralization. centralization
is C_x, which measures how central network's most central vertex is in relation to how central all the other vertices are. theoretical_max
is the denominator of C_x providing the maximal possible value of the numerator across all networks with the same number of vertices.
So, if network A has Freeman centralization 0.04 and network B has 0.001, then we may say that the most central vertex of A is significantly more central than the most central vertex of B. If B is random (i.e., Erdos-Renyi), then that makes sense, because in a big enough network all vertices should play pretty similar role.
Upvotes: 1