Reputation: 69
I have dataframe like this
+----+------------+------------+------------+
| | | type | payment |
+----+------------+------------+------------+
| id | res_number | | |
+----+------------+------------+------------+
| a | 1 | toys | 20000 |
| | 2 | clothing | 30000 |
| | 3 | food | 40000 |
| b | 4 | food | 40000 |
| | 5 | laptop | 30000 |
+----+------------+------------+------------+
as you can see id, and res_number are hierachical row value, and type, payment are normal columns value. What i want to get is below.
array([['toys', 20000],
['clothing', 30000],
['food', 40000]])
It indexed by 'id(=a)' no matter what 'res_number' came, and i know that
df.loc[['a']].values
perfectly works for it. But the speed of indexing is too slow... i have to index 150000 values.
so i indexed dataframe by
df.iloc[1].values
but it only brought
array(['toys', 20000])
is there any indexing method more faster in indexing hierarchical structure?
Upvotes: 3
Views: 223
Reputation: 7994
Another option. Keep an extra dictionary of the beginning and ending indices of each group. ( Assume the index is sorted. )
Option 1 Use the first and the last index in a group to query with iloc
.
d = {k: slice(v[0], v[-1]+1) for k, v in df.groupby("id").indices.items()}
df.iloc[d["b"]]
array([['food', 40000],
['laptop', 30000]], dtype=object)
Option 2 Use the first and the last index to query with numpy
's index slicing on df.values
.
df.values[d["a"]]
Timing
df_testing = pd.DataFrame({"id": [str(v) for v in np.random.randint(0, 100, 150000)],
"res_number": np.arange(150000),
"payment": [v for v in np.random.randint(0, 100000, 150000)]}
).set_index(["id","res_number"]).sort_index()
d = {k: slice(v[0], v[-1]+1) for k, v in df_testing.groupby("id").indices.items()}
# by COLDSPEED
%timeit df_testing.xs('5').values
303 µs ± 17.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
# by OP
%timeit df_testing.loc['5'].values
358 µs ± 22.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
# Tai 1
%timeit df_testing.iloc[d["5"]].values
130 µs ± 3.04 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
# Tai 2
%timeit df_testing.values[d["5"]]
7.26 µs ± 845 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
However, getting d
is not costless.
%timeit {k: slice(v[0], v[-1]+1) for k, v in df_testing.groupby("id").indices.items()}
16.3 ms ± 6.89 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
Whether creating an extra lookup table d worth it?
The cost of creating the index will be spread on the gain from doing queries. In my toy dataset, it will be 16.3 ms / (300 us - 7 us) ≈ 56 queries to recover the cost of creating the index.
Again, the index needs to be sorted.
Upvotes: 0
Reputation: 402393
Option 1
pd.DataFrame.xs
df.xs('a').values
Option 2
pd.DataFrame.loc
df.loc['a'].values
Option 3
pd.DataFrame.query
df.query('ilevel_0 == \'a\'').values
Option 4
A bit more roundabout, use pd.MultiIndex.get_level_values
to create a mask:
df[df.index.get_level_values(0) == 'a'].values
array([['toys', 20000],
['clothing', 30000],
['food', 40000]], dtype=object)
Upvotes: 4
Reputation: 153460
Use .loc with axis parameter
df.loc(axis=0)['a',:].values
Output:
array([['toys', 20000],
['clothing', 30000],
['food', 40000]], dtype=object)
Upvotes: 1