Reputation: 9763
This question has been asked many times on SO, but in every case I found the answer was always to change the OP's code to get the correct result a different way. Example Example
Rather than using a different method to solve the problem, how do you convert a dataframe column to something that can be hashed? Or, if that is not possible, why do you have to use another method?
import pandas as pd
d = {'name':['bil','bil','bil','jim'],
'col2': ['acct','law', 'acct2','law'],
'col3': [1,2,3,55],
'col4': [1,1,1,2]
}
df2 = pd.DataFrame(data=d)
coursesFilter=['acct']
print(df2[df2['col2'].isin([coursesFilter])]) #TypeError: unhashable type: 'list'
print(df2[df2['col2'].isin([pd.Series(coursesFilter)])]) #TypeError: 'Series' objects are mutable, thus they cannot be hashed
print(df2[df2['col2'].isin([pd.Series(coursesFilter).tolist()])]) #TypeError: unhashable type: 'list'
Upvotes: 1
Views: 538
Reputation: 323266
Your coursesFilter already a list object , do not need add []
df2[df2['col2'].isin(coursesFilter)]
Out[410]:
col2 col3 col4 name
0 acct 1 1 bil
Upvotes: 1
Reputation: 862691
I think need remove []
:
print(df2[df2['col2'].isin(coursesFilter)])
print(df2[df2['col2'].isin(pd.Series(coursesFilter))])
print(df2[df2['col2'].isin(pd.Series(coursesFilter).tolist())])
Input Series.isin
parameters:
values : set or list-like
The sequence of values to test. Passing in a single string will raise a TypeError. Instead, turn a single string into a list of one element.
Upvotes: 2