Franco
Franco

Reputation: 858

How to group dataframe by hour using timestamp with Pandas

I have the following dataframe structure that is indexed with a timestamp:

    neg neu norm    pol pos date
time                        
1520353341  0.000   1.000   0.0000  0.000000    0.000   
1520353342  0.121   0.879   -0.2960 0.347851    0.000   
1520353342  0.217   0.783   -0.6124 0.465833    0.000   

I create a date from the timestamp:

data_frame['date'] = [datetime.datetime.fromtimestamp(d) for d in data_frame.time]

Result:

    neg neu norm    pol pos date
time                        
1520353341  0.000   1.000   0.0000  0.000000    0.000   2018-03-06 10:22:21
1520353342  0.121   0.879   -0.2960 0.347851    0.000   2018-03-06 10:22:22
1520353342  0.217   0.783   -0.6124 0.465833    0.000   2018-03-06 10:22:22

I want to group by hour, while getting the mean for all the values, except the timestamp, that should be the hour from where the group started. So this is the result I want to archive:

    neg neu norm    pol pos
time                    
1520352000  0.027989    0.893233    0.122535    0.221079    0.078779
1520355600  0.028861    0.899321    0.103698    0.209353    0.071811

The closest I have gotten so far has been with this answer:

data = data.groupby(data.date.dt.hour).mean()

Results:

    neg neu norm    pol pos
date                    
0   0.027989    0.893233    0.122535    0.221079    0.078779
1   0.028861    0.899321    0.103698    0.209353    0.071811

But I cant figure out how to keep the timestamp that takes in account he hour where the grouby started.

Upvotes: 7

Views: 23113

Answers (3)

Jordi
Jordi

Reputation: 1343

I came across this gem, pd.DataFrame.resample, after I posted my round-to-hour solution.

# Construct example dataframe
times = pd.date_range('1/1/2018', periods=5, freq='25min')
values = [4,8,3,4,1]
df = pd.DataFrame({'val':values}, index=times)

# Resample by hour and calculate medians
df.resample('H').median()

Or you can use groupby with Grouper if you don't want times as index:

df = pd.DataFrame({'val':values, 'times':times})
df.groupby(pd.Grouper(level='times', freq='H')).median()

Upvotes: 21

Jordi
Jordi

Reputation: 1343

You can round the timestamp column down to the nearest hour:

import math
df.time = [math.floor(t/3600) * 3600 for t in df.time]

Or even simpler, using integer division:

df.time = [(t//3600) * 3600 for t in df.time]

You can group by this column and thus preserve the timestamp.

Upvotes: 2

Connor John
Connor John

Reputation: 433

Did you try creating an hour column by:

data_frame['hour'] = data_frame.date.dt.hour

Then grouping by hour like:

data = data.groupby(data.hour).mean()

Upvotes: 4

Related Questions