EdEarl
EdEarl

Reputation: 31

Training classifier from TFRecords in Tensorflow

I already have some code which trains a classifier from numpy arrays. However, my training data set is very large. It seems the recommended solution is to use TFRecords. My attempts to use TFRecords with my own data set have failed, so I have gradually reduced my code to a minimal toy.

Example:

import tensorflow as tf

def readsingleexample(serialized):
    print("readsingleexample", serialized)
    feature = dict()
    feature['x'] = tf.FixedLenFeature([], tf.int64)
    feature['label'] = tf.FixedLenFeature([], tf.int64)
    parsed_example = tf.parse_single_example(serialized, features=feature)
    print(parsed_example)
    return parsed_example['x'], parsed_example['label']

def TestParse(filename):
    record_iterator=tf.python_io.tf_record_iterator(path=filename)
    for string_record in record_iterator:
        example=tf.train.Example()
        example.ParseFromString(string_record)
        print(example.features)

def TestRead(filename):
    record_iterator=tf.python_io.tf_record_iterator(path=filename)
    for string_record in record_iterator:
        feats, label = readsingleexample(string_record)
        print(feats, label)

def _int64_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

def TFRecordsTest(filename):

    example=tf.train.Example(features=tf.train.Features(feature={
        'x': _int64_feature(7),
        'label': _int64_feature(4)
        }))
    writer = tf.python_io.TFRecordWriter(filename)
    writer.write(example.SerializeToString())

    record_iterator=tf.python_io.tf_record_iterator(path=filename)
    for string_record in record_iterator:
        example=tf.train.Example()
        example.ParseFromString(string_record)
        print(example.features)

    dataset=tf.data.TFRecordDataset(filenames=[filename])
    dataset=dataset.map(readsingleexample)
    dataset=dataset.repeat()

    def train_input_fn():
        iterator=dataset.make_one_shot_iterator()
        feats_tensor, labels_tensor = iterator.get_next()
        return {"x":feats_tensor}, labels_tensor

    feature_columns = []
    feature_columns.append(tf.feature_column.numeric_column(key='x'))

    classifier = tf.estimator.DNNClassifier(feature_columns=feature_columns,
                                      hidden_units=[10, 10, 10],
                                      n_classes=2)
    classifier.train(input_fn=train_input_fn, steps=1000)

    return

This results in the following output:

feature {
  key: "label"
  value {
    int64_list {
      value: 4
    }
  }
}
feature {
  key: "x"
  value {
    int64_list {
      value: 7
    }
  }
}

readsingleexample Tensor("arg0:0", shape=(), dtype=string)
{'x': <tf.Tensor 'ParseSingleExample/ParseSingleExample:1' shape=() dtype=int64>, 'label': <tf.Tensor 'ParseSingleExample/ParseSingleExample:0' shape=() dtype=int64>}
WARNING:tensorflow:Using temporary folder as model directory: C:\Users\eeark\AppData\Local\Temp\tmpcl47b2ut
Traceback (most recent call last):
  File "<pyshell#2>", line 1, in <module>
    tfrecords_test.TFRecordsTest(fn)
  File "C:\_P4\user_feindselig\_python\tfrecords_test.py", line 60, in TFRecordsTest
    classifier.train(input_fn=train_input_fn, steps=1000)
  File "C:\Program Files\Python352\lib\site-packages\tensorflow\python\estimator\estimator.py", line 352, in train
    loss = self._train_model(input_fn, hooks, saving_listeners)
  File "C:\Program Files\Python352\lib\site-packages\tensorflow\python\estimator\estimator.py", line 812, in _train_model
    features, labels, model_fn_lib.ModeKeys.TRAIN, self.config)
  File "C:\Program Files\Python352\lib\site-packages\tensorflow\python\estimator\estimator.py", line 793, in _call_model_fn
    model_fn_results = self._model_fn(features=features, **kwargs)
  File "C:\Program Files\Python352\lib\site-packages\tensorflow\python\estimator\canned\dnn.py", line 354, in _model_fn
    config=config)
  File "C:\Program Files\Python352\lib\site-packages\tensorflow\python\estimator\canned\dnn.py", line 185, in _dnn_model_fn
    logits = logit_fn(features=features, mode=mode)
  File "C:\Program Files\Python352\lib\site-packages\tensorflow\python\estimator\canned\dnn.py", line 91, in dnn_logit_fn
    features=features, feature_columns=feature_columns)
  File "C:\Program Files\Python352\lib\site-packages\tensorflow\python\feature_column\feature_column.py", line 273, in input_layer
    trainable, cols_to_vars)
  File "C:\Program Files\Python352\lib\site-packages\tensorflow\python\feature_column\feature_column.py", line 198, in _internal_input_layer
    trainable=trainable)
  File "C:\Program Files\Python352\lib\site-packages\tensorflow\python\feature_column\feature_column.py", line 2080, in _get_dense_tensor
    return inputs.get(self)
  File "C:\Program Files\Python352\lib\site-packages\tensorflow\python\feature_column\feature_column.py", line 1883, in get
    transformed = column._transform_feature(self)  # pylint: disable=protected-access
  File "C:\Program Files\Python352\lib\site-packages\tensorflow\python\feature_column\feature_column.py", line 2048, in _transform_feature
    input_tensor = inputs.get(self.key)
  File "C:\Program Files\Python352\lib\site-packages\tensorflow\python\feature_column\feature_column.py", line 1870, in get
    feature_tensor = self._get_raw_feature_as_tensor(key)
  File "C:\Program Files\Python352\lib\site-packages\tensorflow\python\feature_column\feature_column.py", line 1924, in _get_raw_feature_as_tensor
    key, feature_tensor))
ValueError: Feature (key: x) cannot have rank 0. Give: Tensor("IteratorGetNext:0", shape=(), dtype=int64, device=/device:CPU:0)

What does the error mean? What could be going wrong?

Upvotes: 1

Views: 1114

Answers (2)

Russell Maytham
Russell Maytham

Reputation: 137

rank 0 means its a scalar

so

example=tf.train.Example(features=tf.train.Features(feature={
    'x': [_int64_feature(7)],
    'label': _int64_feature(4)
    }))

would make it rank 1 or a vector i.e. add []

Upvotes: 0

EdEarl
EdEarl

Reputation: 31

The following appears to work: no errors are raised, at least. tf.parse_example([serialized], ...) is used instead of tf.parse_single_example(serialized, ...). (Also, the label in the synthetic data was altered to be less than the number of classes.)

import tensorflow as tf

def readsingleexample(serialized):
    print("readsingleexample", serialized)
    feature = dict()
    feature['x'] = tf.FixedLenFeature([], tf.int64)
    feature['label'] = tf.FixedLenFeature([], tf.int64)
    parsed_example = tf.parse_example([serialized], features=feature)
    print(parsed_example)
    return parsed_example['x'], parsed_example['label']

def TestParse(filename):
    record_iterator=tf.python_io.tf_record_iterator(path=filename)
    for string_record in record_iterator:
        example=tf.train.Example()
        example.ParseFromString(string_record)
        print(example.features)

def TestRead(filename):
    record_iterator=tf.python_io.tf_record_iterator(path=filename)
    for string_record in record_iterator:
        feats, label = readsingleexample(string_record)
        print(feats, label)

def _int64_feature(value):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

def TFRecordsTest(filename):

    example=tf.train.Example(features=tf.train.Features(feature={
        'x': _int64_feature(7),
        'label': _int64_feature(0)
        }))
    writer = tf.python_io.TFRecordWriter(filename)
    writer.write(example.SerializeToString())

    record_iterator=tf.python_io.tf_record_iterator(path=filename)
    for string_record in record_iterator:
        example=tf.train.Example()
        example.ParseFromString(string_record)
        print(example.features)

    dataset=tf.data.TFRecordDataset(filenames=[filename])
    dataset=dataset.map(readsingleexample)
    dataset=dataset.repeat()

    def train_input_fn():
        iterator=dataset.make_one_shot_iterator()
        feats_tensor, labels_tensor = iterator.get_next()
        return {'x':feats_tensor}, labels_tensor

    feature_columns = []
    feature_columns.append(tf.feature_column.numeric_column(key='x'))

    classifier = tf.estimator.DNNClassifier(feature_columns=feature_columns,
                                      hidden_units=[10, 10, 10],
                                      n_classes=2)
    classifier.train(input_fn=train_input_fn, steps=1000)

    return

Upvotes: 2

Related Questions