Reputation: 433
Determine whether there exists a graph with a sequence of degrees of vertices (s = s1, s2...sn). What is the best and most optimized algorithm for solving this problem.
Input:
the first line contains `t<100` - amount of sequnces.
the second line contains value `n <= 1000000`(length of a sequence).
the third line contains contains `n` non-negative integer numbers. And so on.
Output:
if the graph can exist print "yes" otherwise print "no".
For example:
Input:
3
5
1 2 3 2 1
4
3 3 2 2
3
1 3 2
Output:
No
Yes
Yes
The maximum execution time should be 0.4 second. Here is my code (If the number of odd vertices is even, then the graph exists):
import java.util.Scanner;
public class Main {
public static final Scanner in = new Scanner(System.in);
public static void isGraph (int []a, int n) {
int k=0;
for(int i=0; i< n; i++) {
if(a[i] %2 != 0) {
k++;
}
}
if(k%2 == 0)
System.out.println("Yes");
else
System.out.println("No");
}
public static void main(String[] args) throws Exception{
double t1 = System.nanoTime();
int n;
int []a;
int t = Integer.parseInt(in.nextLine());
while(t-- > 0) {
n = in.nextInt();
a = new int[n];
for(int i=0; i<n; i++)
a[i] = in.nextInt();
isGraph(a,n);
}
System.out.println(System.nanoTime() - t1);
}
}
But the execution time of this program is more than 0.4 second. I get run time exceeded. How I can optimize code and speed up runtime. May be there is another algorithm to solve this task, please help me.
Upvotes: 1
Views: 195
Reputation: 5829
I think I have a faster way for you. Please verify this. If you are concerned about the final outcome of even/odd, then there seems to be no reason to keep track of the k counter. You can keep a dynamic value of whether the running sequence is even or odd:
public static void isGraph (int []a, int n) {
int k = 0;
for(int i=0; i< n; i++) {
k += a[i] & 1;
}
if(k%2 == 0)
System.out.println("Yes");
else
System.out.println("No");
}
This might help your reading: I have no experience with it however, I got it from a competition website:
Slow way to read:
/** Read count integers using Scanner */
static int scanInteger(int count) {
Scanner scanner = new Scanner(input);
int last = 0;
while (count-- > 0) {
last = scanner.nextInt();
}
return last;
}
Faster way:
static int readIntegers(int count)
throws IOException {
BufferedReader reader = new BufferedReader(
new InputStreamReader(input) );
StringTokenizer tokenizer = new StringTokenizer("");
int last = 0;
while (count-- > 0) {
if (! tokenizer.hasMoreTokens() ) {
tokenizer = new StringTokenizer(reader.readLine());
}
last = Integer.parseInt(tokenizer.nextToken());
}
return last;
}
EDIT: to show how to avoid two phases where Phase 1 is the read loop, and Phase 2 is the algorithm:
public static void main(String[] args) throws Exception{
double t1 = System.nanoTime();
int n;
// int []a; // Not necessary
int t = Integer.parseInt(in.nextLine());
while(t-- > 0) {
n = in.nextInt();
// a = new int[n]; // Not necessary
int k = 0;
int a;
for(int i=0; i<n; i++) {
a = in.nextInt();
k += a & 1;
}
// isGraph(a,n); // Not necessary
if(k % 2 == 0)
System.out.println("Yes");
else
System.out.println("No");
}
System.out.println(System.nanoTime() - t1);
}
Upvotes: 2
Reputation: 718826
May be there is another algorithm to solve this task
That's not the problem (IMO).
Hint 1: since you know the length of the sequence beforehand, you can create the array and parse the sequence faster than this:
a = Arrays.stream(s.split(" ")).mapToInt(Integer::parseInt).toArray();
(Java 8+ streams are elegant, but they are not the fastest way.)
Hint 2: using Scanner
is probably faster than reading strings and parsing them.
Hint 3: you could probably avoid creating an array entirely. (It would be poor coding practice IMO ... but if performance is critical ...)
Upvotes: 0