Reputation: 13
I have created a program to remove first smallest element but I dont how to do for second largest:
withoutBiggest (x:xs) =
withoutBiggestImpl (biggest x xs) [] (x:xs)
where
biggest :: (Ord a) => a -> [a] -> a
biggest big [] = big
biggest big (x:xs) =
if x < big then
biggest x xs
else
biggest big xs
withoutBiggestImpl :: (Eq a) => a -> [a] -> [a] -> [a]
withoutBiggestImpl big before (x:xs) =
if big == x then
before ++ xs
else
withoutBiggestImpl big (before ++ [x]) xs
Upvotes: 0
Views: 544
Reputation: 16105
You can remove the biggest elements by first finding it and then filtering it:
withoutBiggest :: Ord a => [a] -> [a]
withoutBiggest [] = []
withoutBiggest xs = filter (/= maximum xs) xs
You can then remove the second-biggest element in much the same way:
withoutSecondBiggest :: Ord a => [a] -> [a]
withoutSecondBiggest xs =
case withoutBiggest xs of
[] -> xs
rest -> filter (/= maximum rest) xs
Assumptions made:
maximum xs
, there also isn't a second-biggest element even though there may be two or more elements in total.Ord
type-class instance implies a total ordering. Otherwise you may have multiple maxima that are not equivalent; otherwise which one is picked as the biggest and second-biggest is not well-defined.Upvotes: 0
Reputation: 1253
Here is a solution that removes the n smallest elements from your list:
import Data.List
deleteN :: Int -> [a] -> [a]
deleteN _ [] = []
deleteN i (a:as)
| i == 0 = as
| otherwise = a : deleteN (i-1) as
ntails :: Int -> [a] -> [(a, Int)] -> [a]
ntails 0 l _ = l
ntails n l s = ntails (n-1) (deleteN (snd $ head s) l) (tail s)
removeNSmallest :: Ord a => Int -> [a] -> [a]
removeNSmallest n l = ntails n l $ sort $ zip l [0..]
EDIT:
If you just want to remove the 2nd smallest element:
deleteN :: Int -> [a] -> [a]
deleteN _ [] = []
deleteN i (a:as)
| i == 0 = as
| otherwise = a : deleteN (i-1) as
remove2 :: [a] -> [(a, Int)] -> [a]
remove2 [] _ = []
remove2 [a] _ = []
remove2 l s = deleteN (snd $ head $ tail s) l
remove2Smallest :: Ord a => [a] -> [a]
remove2Smallest l = remove2 l $ sort $ zip l [0..]
Upvotes: 1
Reputation: 84529
A possibility, surely not the best one.
import Data.Permute (rank)
x = [4,2,3]
ranks = rank (length x) x -- this gives [2,0,1]; that means 3 (index 1) is the second smallest
Then:
[x !! i | i <- [0 .. length x -1], i /= 1]
Hmm.. not very cool, let me some time to think to something better please and I'll edit my post.
Moreover my previous solution was wrong. This one should be correct, but again not the best one:
import Data.Permute (rank, elems, inverse)
ranks = elems $ rank (length x) x
iranks = elems $ inverse $ rank (length x) x
>>> [x !! (iranks !! i) | i <- filter (/=1) ranks]
[4,2]
An advantage is that this preserves the order of the list, I think.
Upvotes: 1
Reputation: 1024
Here is a simple solution.
Prelude> let list = [10,20,100,50,40,80]
Prelude> let secondLargest = maximum $ filter (/= (maximum list)) list
Prelude> let result = filter (/= secondLargest) list
Prelude> result
[10,20,100,50,40]
Prelude>
Upvotes: 1
Reputation: 3266
It was not clear if the OP is looking for the biggest (as the name withoutBiggest
implies) or what. In this case, one solution is to combine the filter :: (a->Bool) -> [a] -> [a]
and maximum :: Ord a => [a] -> a
functions from the Prelude
.
withoutBiggest l = filter (/= maximum l) l
Upvotes: 0