Reputation: 15
I have calculated a linear regression using all the elements of my dataset (24), and the resulting model is IP2. Now I want to know how well that single model fits (r-squared, I am not interested in the slope and intercept) for each country in my dataset. The awful way to do is (I would need to do the following 200 times)
Country <- c("A","A","A","A","A","A","A","A","A","A","A","A","B","B","B","B","B","B","B","B","B","B","B","B")
IP <- c(55,56,59,63,67,69,69,73,74,74,79,87,0,22,24,26,26,31,37,41,43,46,46,47)
IP2 <- c(46,47,49,50,53,55,53,57,60,57,58,63,0,19,20,21,22,25,26,28,29,30,31,31)
summary(lm(IP[Country=="A"] ~ IP2[Country=="A"]))
summary(lm(IP[Country=="B"] ~ IP2[Country=="B"]))
Is there a way of calculating both r-squared at the same time? I tried with Linear Regression and group by in R as well as some others posts (Fitting several regression models with dplyr), but it did not work, and I get the same coefficients for the four groups I am working with. Any idea on what I am doing wrong or how to solve the problem? Thank you
Upvotes: 1
Views: 2008
Reputation: 4537
You can use the split
function and then mapply
to accomplish this.
split
takes a vector and turns it into a list with k elements where k is the distinct levels of (in this case) Country.mapply
allows us to loop over multiple inputs.getR2
is a simple function that takes two inputs, fits a model and then extracts the R^2 value.Code example below
Country <- c("A","A","A","A","A","A","A","A","A","A","A","A","B","B","B","B","B","B","B","B","B","B","B","B")
IP <- c(55,56,59,63,67,69,69,73,74,74,79,87,0,22,24,26,26,31,37,41,43,46,46,47)
IP2 <- c(46,47,49,50,53,55,53,57,60,57,58,63,0,19,20,21,22,25,26,28,29,30,31,31)
ip_split = split(IP,Country)
ip2_split = split(IP2,Country)
getR2 = function(ip,ip2){
model = lm(ip~ip2)
return(summary(model)$r.squared)
}
r2.values = mapply(getR2,ip_split,ip2_split)
r2.values
#> A B
#> 0.9451881 0.9496636
Upvotes: 0
Reputation: 48251
A couple of options with base R:
sapply(unique(Country), function(cn)
summary(lm(IP[Country == cn] ~ IP2[Country == cn]))$r.sq)
# A B
# 0.9451881 0.9496636
and
c(by(data.frame(IP, IP2), Country, function(x) summary(lm(x))$r.sq))
# A B
# 0.9451881 0.9496636
or
sapply(split(data.frame(IP, IP2), Country), function(x) summary(lm(x))$r.sq)
# A B
# 0.9451881 0.9496636
Upvotes: 1