Reputation: 505
I am trying to iterate the rows in a dataframe (data) to check if one of the columns (data$ID) has similar difference (e.g., 3) between consecutive elements. If yes, keep the row, otherwise remove the row. The tricky part is I need to re-compare consecutive elements after certain row is removed.
data <- data.frame(ID=c(3.1, 6, 6.9, 9, 10.5, 12, 14.2, 15),
score = c(70, 80, 90, 65, 43, 78, 44, 92))
data
ID score
1 3.1 70
2 6 80
3 6.9 90
4 9 65
5 10.5 43
6 12 78
7 14.2 44
8 15 92
for (i in (length(data$ID)-1)) {
first <- data$ID[i]
second <- data$ID[i+1]
if ((second-first) == 3){
data <- data[-(i+1),]
}
}
The expected output data should be
ID score
1 3.1 70
2 6 80
3 9 65
4 12 78
5 15 92
The initial row 3, 5, 7 are excluded due to the different diff. But my code failed.
I also try to use diff function,
DF <- diff(data)
But it doesn't take care the fact that after one row is removed, the difference will change. Should I use diff function in a loop, but the dataframe is dynamic changed.
Upvotes: 2
Views: 376
Reputation: 20095
An option could be achieved using cumsum
and diff
as:
#data
data <- data.frame(ID=c(3.1, 6, 6.9, 9, 10.5, 12, 14.2, 15),
score = c(70, 80, 90, 65, 43, 78, 44, 92))
data[c(0, cumsum(diff(round(data$ID))) %% 3 ) == 0,]
# ID score
# 1 3.1 70
# 2 6.0 80
# 4 9.0 65
# 6 12.0 78
# 8 15.0 92
Upvotes: 2
Reputation: 6132
If you define you want to keep all rows of which the ID, when rounded to 0 digits, belongs to a product of 3, you could try:
df1 <- data.frame(ID=c(3.1, 6, 6.9, 9, 10.5, 12, 14.2, 15),
score = c(70, 80, 90, 65, 43, 78, 44, 92))
df1[round(df1$ID) %% 3 == 0,]
ID score
1 3.1 70
2 6.0 80
4 9.0 65
6 12.0 78
8 15.0 92
Upvotes: 0
Reputation: 4378
Using a recursive function (a function that calls itself)
data <- data.frame(ID=c(3.1, 6, 6.9, 9, 10.5, 12, 14.2, 15),
score = c(70, 80, 90, 65, 43, 78, 44, 92))
# use recursive function to trim the remainder of the list
trim_ids <- function (ids) {
# if only one element, return it
if (length(ids) <= 1) {
return(ids)
}
# if the gap between element 2 and element 1 is small enough
if ((ids[2] - ids[1]) < 2.9 ) {
# trim after dropping the second element
return(trim_ids(ids[-2]))
} else {
# keep the first element and trim from the second element
return(c(ids[1], trim_ids(ids[2:length(ids)] )))
}
}
# find the ids to keep
keep_ids <- trim_ids(data$ID)
# select the matching rows
data[data$ID %in% keep_ids,]
# ID score
# 1 3.1 70
# 2 6.0 80
# 4 9.0 65
# 6 12.0 78
# 8 15.0 92
Upvotes: 2