Reputation: 5211
With dplyr
it is easy to create a new column using mutate
:
df <- data.frame(v1 = 1:3, v2 = c('a','b','c'))
> mutate(df, newcol = NA)
v1 v2 newcol
1 1 a NA
2 2 b NA
3 3 c NA
We can also create multiple new columns with a vector using mutate_at
(shown here):
> cnames <- c('newcol1', 'newcol2', 'newcol3')
> mutate_at(df, cnames, funs(log(v1)))
v1 v2 newcol1 newcol2 newcol3
1 1 a 0.0000000 0.0000000 0.0000000
2 2 b 0.6931472 0.6931472 0.6931472
3 3 c 1.0986123 1.0986123 1.0986123
Is there a simple way to initialize these new columns as NA using dplyr
?
For example, mutate_at(df, cnames, funs(v1 * NA))
gives the desired result, but that seems indirect. What I would like is something along the lines of:
mutate_at(df, cnames, funs(. = NA)) # Error: Can't create call to non-callable object
where we don't need to know the names of any other columns.
(I know this is simply solved with df[ , cnames] <- NA
, but I'm looking for a solution using dplyr
functions)
EDIT:
Using later versions of dplyr
the example becomes:
mutate_at(df, all_of(cnames), funs(log(v1)))
Upvotes: 3
Views: 3123
Reputation: 26373
You could do this.
library(dplyr)
df %>%
`is.na<-`(cnames)
# v1 v2 newcol1 newcol2 newcol3
#1 1 a NA NA NA
#2 2 b NA NA NA
#3 3 c NA NA NA
I hope one %>%
is dplyr
enough. ;)
Upvotes: 5