Reputation: 47
The below python script computes the following.
I want to compute the sales tax component for each of the reports.
(All the items have a sales tax of 9.25%.)
import pandas as pd
from io import StringIO
mystr = """Pedro|groceries|apple|1.42
Nitin|tobacco|cigarettes|15.00
Susie|groceries|cereal|5.50
Susie|groceries|milk|4.75
Susie|tobacco|cigarettes|15.00
Susie|fuel|gasoline|44.90
Pedro|fuel|propane|9.60"""
df = pd.read_csv(StringIO(mystr), header=None, sep='|',
names=['Name', 'Category', 'Product', 'Sales'])
# Report 1
rep1 = df.groupby('Name')['Sales'].sum()
# Name
# Nitin 15.00
# Pedro 11.02
# Susie 70.15
# Name: Sales, dtype: float64
# Report 2
rep2 = df.groupby(['Name', 'Category'])['Sales'].sum()
# Name Category
# Nitin tobacco 15.00
# Pedro fuel 9.60
# groceries 1.42
# Susie fuel 44.90
# groceries 10.25
# tobacco 15.00
# Name: Sales, dtype: float64
Upvotes: 1
Views: 7333
Reputation: 164653
This is possible via vectorised pandas calculations:
import pandas as pd
from io import StringIO
mystr = """Pedro|groceries|apple|1.42
Nitin|tobacco|cigarettes|15.00
Susie|groceries|cereal|5.50
Susie|groceries|milk|4.75
Susie|tobacco|cigarettes|15.00
Susie|fuel|gasoline|44.90
Pedro|fuel|propane|9.60"""
df = pd.read_csv(StringIO(mystr), header=None, sep='|',
names=['Name', 'Category', 'Product', 'Sales'])
# Report 1
rep1 = df.groupby('Name', as_index=False)['Sales'].sum()
rep1['Tax'] = rep1['Sales'] * 0.0925
# Name Sales Tax
# 0 Nitin 15.00 1.387500
# 1 Pedro 11.02 1.019350
# 2 Susie 70.15 6.488875
# Report 2
rep2 = df.groupby(['Name', 'Category'], as_index=False)['Sales'].sum()
rep2['Tax'] = rep2['Sales'] * 0.0925
# Name Category Sales Tax
# 0 Nitin tobacco 15.00 1.387500
# 1 Pedro fuel 9.60 0.888000
# 2 Pedro groceries 1.42 0.131350
# 3 Susie fuel 44.90 4.153250
# 4 Susie groceries 10.25 0.948125
# 5 Susie tobacco 15.00 1.387500
Upvotes: 5