Reputation: 35
I need to iterate over a dataframe to get the values from the first date to move to the next row and start with same first value. Importantly, I need the new inputs to stop at the column range and not overflow past day5 in the example below.
current output:
day1 day2 day3 day4 day5
date
2018-03-16 1.0 2.0 3.0 4.0 5.0
2018-03-17 NaN NaN NaN NaN NaN
2018-03-18 NaN NaN NaN NaN NaN
2018-03-19 NaN NaN NaN NaN NaN
2018-03-20 NaN NaN NaN NaN NaN
desired output:
day1 day2 day3 day4 day5
date
2018-03-16 1.0 2.0 3.0 4.0 5.0
2018-03-17 NaN 1.0 2.0 3.0 4.0
2018-03-18 NaN NaN 1.0 2.0 3.0
2018-03-19 NaN NaN NaN 1.0 2.0
2018-03-20 NaN NaN NaN NaN 1.0
sample code to iterate:
data = [1, 2, 3, 4, 5]
columns_name = ['day1', 'day2', 'day3', 'day4', 'day5']
df = pd.DataFrame(data)
df = df.T
df.columns = columns_name
dates = pd.date_range('2018-03-16', '2018-03-20').tolist()
dates_df = pd.DataFrame(dates)
dates_df.columns = ['date']
dfs = [df, dates_df]
combined = pd.concat(dfs, axis=1)
combined = combined.set_index(['date'])
Upvotes: 2
Views: 586
Reputation: 294218
numpy.triu_indices
Slice the first row with triangle indices and assign
v = df.values
i, j = np.triu_indices(v.shape[1])
v[i, j] = v[0][j - i]
df
day1 day2 day3 day4 day5
date
2018-03-16 1.0 2.0 3.0 4.0 5.0
2018-03-17 NaN 1.0 2.0 3.0 4.0
2018-03-18 NaN NaN 1.0 2.0 3.0
2018-03-19 NaN NaN NaN 1.0 2.0
2018-03-20 NaN NaN NaN NaN 1.0
If that happens not to work for you because df.values
is a copy and not a view:
v = df.values
i, j = np.triu_indices(v.shape[1])
v[i, j] = v[0][j - i]
df.loc[:] = v
df
day1 day2 day3 day4 day5
date
2018-03-16 1.0 2.0 3.0 4.0 5.0
2018-03-17 NaN 1.0 2.0 3.0 4.0
2018-03-18 NaN NaN 1.0 2.0 3.0
2018-03-19 NaN NaN NaN 1.0 2.0
2018-03-20 NaN NaN NaN NaN 1.0
numpy.lib.stride_tricks.as_strided
NOT RECOMMENDED
But still fun
from numpy.lib.stride_tricks import as_strided as strided
n = df.shape[1]
v = np.append([np.nan for _ in range(n - 1)], df.values[0])
s = v.strides[0]
df.loc[:] = strided(v[n - 1:], df.shape, (-s, s))
df
day1 day2 day3 day4 day5
date
2018-03-16 1.0 2.0 3.0 4.0 5.0
2018-03-17 NaN 1.0 2.0 3.0 4.0
2018-03-18 NaN NaN 1.0 2.0 3.0
2018-03-19 NaN NaN NaN 1.0 2.0
2018-03-20 NaN NaN NaN NaN 1.0
Upvotes: 4