Reputation: 1445
In the below example I only want to retain the row 1 and 2 I want to delete all the rows which has 0 anywhere across the column:
kt b tt mky depth
1 1 1 1 1 4
2 2 2 2 2 2
3 3 3 0 3 3
4 0 4 0 0 0
5 5 5 5 5 0
the output should read like below:
kt b tt mky depth
1 1 1 1 1 4
2 2 2 2 2 2
I have tried:
df.loc[(df!=0).any(axis=1)]
But it deletes the row only if all of its corresponding columns are 0
Upvotes: 1
Views: 424
Reputation: 863411
You are really close, need DataFrame.all
for check all True
s per row:
df = df.loc[(df!=0).all(axis=1)]
print (df)
kt b tt mky depth
1 1 1 1 1 4
2 2 2 2 2 2
Details:
print (df!=0)
kt b tt mky depth
1 True True True True True
2 True True True True True
3 True True False True True
4 False True False False False
5 True True True True False
print ((df!=0).all(axis=1))
1 True
2 True
3 False
4 False
5 False
dtype: bool
Alternative solution with any
for check at least one True
for row with changed mask df == 0
and inversing by ~
:
df = df.loc[~(df==0).any(axis=1)]
Upvotes: 2