Reputation: 24675
I have a dataset in tibble in R like the one below:
# A tibble: 50,045 x 5
ref_key start_date end_date
<chr> <date> <date>
1 123 2010-01-08 2010-01-13
2 123 2010-01-21 2010-01-23
3 123 2010-03-10 2010-04-14
I need to create another tibble that each row only store one date, like the one below:
ref_key date
<chr> <date>
1 123 2010-01-08
2 123 2010-01-09
3 123 2010-01-10
4 123 2010-01-11
5 123 2010-01-12
6 123 2010-01-13
7 123 2010-01-21
8 123 2010-01-22
9 123 2010-01-23
Currently I am writing an explicit loop for that like below:
for (loop in (1:nrow(input.df))) {
if (loop%%100==0) {
print(paste(loop,'/',nrow(input.df)))
}
temp.df.st00 <- input.df[loop,] %>% data.frame
temp.df.st01 <- tibble(ref_key=temp.df.st00[,'ref_key'],
date=seq(temp.df.st00[,'start_date'],
temp.df.st00[,'end_date'],1))
if (loop==1) {
output.df <- temp.df.st01
} else {
output.df <- output.df %>%
bind_rows(temp.df.st01)
}
}
It is working, but in a slow way, given that I have >50k rows to process, it takes a few minutes to finish the loop.
I wonder if this step can be vectorized, is it something related to row_wise
in dplyr
?
Upvotes: 2
Views: 850
Reputation: 20095
One solution is to use tidyr::complete
to expand rows. Since row expansion is based on start-date
and end_date
of a row, hence group_by
on row_number
will help to generate sequence of Date
between start-date
and end_date
.
library(dplyr)
library(tidyr)
df %>% #mutate(rnum = row_number()) %>%
group_by(row_number()) %>%
complete(start_date = seq.Date(max(start_date), max(end_date), by="day")) %>%
fill(ref_key) %>%
ungroup() %>%
select(ref_key, date = start_date)
# # A tibble: 45 x 2
# ref_key date
# <int> <date>
# 1 123 2010-01-08
# 2 123 2010-01-09
# 3 123 2010-01-10
# 4 123 2010-01-11
# 5 123 2010-01-12
# 6 123 2010-01-13
# 7 123 2010-01-21
# 8 123 2010-01-22
# 9 123 2010-01-23
# 10 123 2010-03-10
# # ... with 35 more rows
Data
df <- read.table(text = "ref_key start_date end_date
123 2010-01-08 2010-01-13
123 2010-01-21 2010-01-23
123 2010-03-10 2010-04-14", header = TRUE, stringsAsFactor = FALSE)
df$start_date <- as.Date(df$start_date)
df$end_date <- as.Date(df$end_date)
Upvotes: 1
Reputation: 887541
We create a row name column (rownames_to_column
), then nest
the 'rn' and 'ref_key', mutate
by taking the sequence of 'start_date' and 'end_date' within map
and unnest
after select
ing out the unwanted columns
library(tidyverse)
res <- df1 %>%
rownames_to_column('rn') %>%
nest(-rn, -ref_key) %>%
mutate(date = map(data, ~ seq(.x$start_date, .x$end_date, by = "1 day"))) %>%
select(-data, -rn) %>%
unnest
head(res, 9)
# ref_key date
#1 123 2010-01-08
#2 123 2010-01-09
#3 123 2010-01-10
#4 123 2010-01-11
#5 123 2010-01-12
#6 123 2010-01-13
#7 123 2010-01-21
#8 123 2010-01-22
#9 123 2010-01-23
Upvotes: 3