Reputation: 5
Is there a limit on how many times one can train their CNN model? In the sense, say I have my CNN model and a training set.I train my model and using a unseen data test it. If I am not satisfied with the test accuracy, can I retrain my CNN as many times as possible (hypothetically) and test it again, till the performance is better?
I know other ways to improve the performance like, changing the structure of the network, filter size and number of filters, but say I want to have the structure and hyper-parameters fixed. Also I see when I train my CNN for the fifth or sixth time it gives me better test accuracy.
Is this correct?
Thanks for your time and help.
--Venkat
Upvotes: 0
Views: 455
Reputation: 52
There is no limit on the number of times one can train a neural network, but the important thing would be to save the weights of your model after some iterations so that you can reload it whenever you want and continue from wherever the training left. This would help you in saving time as well as compute. Number of iterations required for a neural network varies from data to data and architecture to architecture, Ideally shallow models would need less iterations and deeper models would need more. I have both worked on models producing good results in a single iterations as well as models converging after fifty iterations.
Upvotes: 0