Reputation: 507
I have below mentioned dataframr:
DF_1
ID Date
123 18/03/2018 16:45
456 10/03/2018 20:15
DF_2
ID Date1 Date2
123 2018-03-18 06:37:22 1519109133704
123 2018-03-18 06:37:21 1520324827462
123 2018-03-16 04:03:01 1520690354458
456 2018-03-10 14:46:03 1517319313151
456 2018-03-10 14:46:04 1515143046429
456 2018-03-10 14:46:03 1515838021062
456 2018-03-10 14:46:15 1488092209241
Month
considering Date2
of the
DF_2 with respect to the ID
with comparing ID
of DF_1.Avg
of Rows created per month (i.e if there are 3
month based on Date2
comprising 90 Rows than average would be 30).Day
(i.e if there are 3 month
comprising 90 rows than there would be value 1 for Day
).Last5
Count of Number of Rows created in Last 5 days (considering Date1
)
with respect to Sys.Date()
I have below mentioned code for the same:
library(tidyverse)
library(lubridate)
DF_2 <- tibble(ID = c(123L, 123L, 123L, 456L, 456L, 456L, 456L),
Date1 = c("2018-03-18 06:37:22", "2018-03-18 06:37:21", "2018-03-16 04:03:01",
"2018-03-10 14:46:03", "2018-03-10 14:46:04", "2018-03-10 14:46:03",
"2018-03-10 14:46:15"),
Date2 = c(1519109133704, 1520324827462, 1520690354458, 1517319313151, 1515143046429, 1515838021062, 1488092209241)
)
DF_2 <- DF_2 %>% mutate(Date1 = ymd_hms(Date1),
Date2 = as.POSIXct(Date2/1000,origin = "1970-01-01"))
DF_2_tab <- DF_2 %>% group_by(ID) %>% summarise(date1 = sum(date(Date1)==date(DF_1$Date1[DF_1$ID==ID])),
Total = n(),
Month = month(count(Date2)),
Avg = mean #Don;t know how to calculate
Day = day(Date2),
Last5 = sum( (Sys.Date()-date(Date1)) < 5 )
)
Upvotes: 0
Views: 748
Reputation: 2103
Your statement 1 is not very clear, what is the use of DF_1. Anyway, please see the code below to summarize the DF_2 the way you want. In case, I have distinct number of months, and total record, Point 2 and 3 is accomplished (assuming you are simply taking 30 days a month, as you have explained above). 4th point is done in the code -
DF_2 = data.table(DF_2)
DF = DF_2[, list(num_mth = uniqueN(format(Date2, "%Y%m")), num_rec=.N,
numrec_5d=length(ID[as.numeric(difftime(today(), Date2), units = "days")<=5])),
by=ID]
Since you explained the use of DF_1, I have edited my code. Now first merge the two datasets on ID and date1, and then summarize -
DF_2 <- tibble(ID = c(123L, 123L, 123L, 456L, 456L, 456L, 456L),
Date1 = c("2018-03-18 06:37:22", "2018-03-18 06:37:21", "2018-03-16 04:03:01",
"2018-03-10 14:46:03", "2018-03-10 14:46:04", "2018-03-10 14:46:03",
"2018-03-10 14:46:15"),
Date2 = c(1519109133704, 1520324827462, 1520690354458, 1517319313151, 1515143046429, 1515838021062, 1488092209241)
)
DF_2 <- DF_2 %>% mutate(Date1 = ymd_hms(Date1),
Date2 = as.POSIXct(Date2/1000,origin = "1970-01-01"))
DF_1 <- tibble(ID = c(123L, 456L),
Date1 = c("18/03/2018 16:45", "10/03/2018 20:15"))
DF_1 <- DF_1 %>% mutate(Date1 = dmy_hm(Date1))
DF_2 = data.table(DF_2)
DF_1 = data.table(DF_1)
DF_2 = DF_2[, Date1:= date(Date1)]
DF_2 = DF_2[, Date2:= date(Date2)]
DF_1 = DF_1[, Date1:= date(Date1)]
DF_1[DF_2, on = c("ID","Date1") , nomatch=0L]
DF = DF_2[, list(num_mth = uniqueN(format(Date2, "%Y%m")), num_rec=.N,
num_day = uniqueN(format(Date2, "%Y%m%d")),
numrec_5d=length(ID[as.numeric(difftime(today(), Date2), units = "days")<=5])),
by=ID]
DF[, recpermonth := num_rec/num_mth][, recperday := num_rec/num_day][, recperday2 := num_mth/num_day/30]
Upvotes: 1