Reputation: 457
I would like to do a group_by or aggregate. I have something like:
> head(affiliation_clean)
Affiliation_ID Affiliation_Name City Country
1 000001 New Mexico State University Las Cruces Las Cruces United States
2 000001 New Mexico State University Las Cruces Las Cruces <NA>
3 000001 New Mexico State University Las Cruces <NA> <NA>
4 000002 Palo Alto Research Center Incorporated Palo Alto <NA>
5 000002 Palo Alto Research Center Incorporated <NA> United States
6 000002 Palo Alto Research Center Incorporated <NA> <NA>
Grouping by "Affiliation_ID" and taking the longest string of "Affiliation_Name", "City" and "Country", I would like to get:
> head(affiliation_clean)
Affiliation_ID Affiliation_Name City Country
1 000001 New Mexico State University Las Cruces Las Cruces United States
2 000002 Palo Alto Research Center Incorporated Palo Alto United States
Thanks in advance.
Upvotes: 1
Views: 38
Reputation: 39154
Here is a dplyr
solution based on your description to select the longest string of each Affiliation_ID
and column.
library(dplyr)
dat2 <- dat %>%
group_by(Affiliation_ID) %>%
summarise_all(funs(.[which.max(nchar(.))][1]))
dat2
# # A tibble: 2 x 4
# Affiliation_ID Affiliation_Name City Country
# <int> <chr> <chr> <chr>
# 1 1 New Mexico State University Las Cruces Las Cruces United States
# 2 2 Palo Alto Research Center Incorporated Palo Alto United States
DATA
dat <-read.table(text = " Affiliation_ID Affiliation_Name City Country
1 '000001' 'New Mexico State University Las Cruces' 'Las Cruces' 'United States'
2 '000001' 'New Mexico State University Las Cruces' 'Las Cruces' NA
3 '000001' 'New Mexico State University Las Cruces' NA NA
4 '000002' 'Palo Alto Research Center Incorporated' 'Palo Alto' NA
5 '000002' 'Palo Alto Research Center Incorporated' NA 'United States'
6 '000002' 'Palo Alto Research Center Incorporated' NA NA",
header = TRUE, stringsAsFactors = FALSE)
Upvotes: 1
Reputation: 886938
Assuming that there is a single unique
'City/Country' for each 'Affiliation_ID', 'Affiliation_Name', after grouping at the first two columns, get the unique
non-NA element of all other columns with summarise_all
library(dplyr)
affiliation_clean %>%
group_by(Affiliation_ID, Affiliation_Name) %>%
summarise_all(funs(unique(.[!is.na(.)])) )
# A tibble: 2 x 4
# Groups: Affiliation_ID [?]
# Affiliation_ID Affiliation_Name City Country
# <chr> <chr> <chr> <chr>
#1 000001 New Mexico State University Las Cruces Las Cruces United States
#2 000002 Palo Alto Research Center Incorporated Palo Alto United States
Upvotes: 1