Reputation: 7824
I'm writing a program for a numerical simulation in C. Part of the simulation are spatially fixed nodes that have some float value to each other node. It is like a directed graph. However, if two nodes are too far away, (farther than some cut-off length a) this value is 0.
To represent all these "correlations" or float values, I tried to use a 2D array, but since I have 100.000 and more nodes, that would correspond to 40GB memory or so.
Now, I am trying to think of different solustions for that problem. I don't want to save all these values on the harddisk. I also don't want to calculate them on the fly. One idea was some sort of sparse matrix, like the one one can use in Matlab.
Do you have any other ideas, how to store these values?
I am new to C, so please don't expect too much experience.
Thanks and best regards, Jan Oliver
Upvotes: 5
Views: 1421
Reputation: 4341
You could also hold a list for each node, which contains the other nodes this node is related to. You would then have an overall number of list entries of 2*k, where k is the number of non-zero values in the virtual matrix.
Implementing the whole system as a combination of hashes/sets/maps is still expected to be acceptable with regard to speed/performance compared to a "real" matrix allowing random access.
edit: This solution is one possible form of an implementation of a sparse matrix. (See also Jim Balter's note below. Thank you, Jim.)
Upvotes: 1
Reputation: 16406
How many nodes, on average, are within the cutoff distance for a given node determines your memory requirement and tells you whether you need to page to disk. The solution taking the least memory is probably a hash table that maps a pair of nodes to a distance. Since the distance is the same each way, you only need to enter it into the hash table once for the pair -- put the two node numbers in numerical order and then combine them to form a hash key. You could use the Posix hsearch/hcreate/hdestroy functions for the hash table, although they are less than ideal.
Upvotes: 4
Reputation: 32919
A sparse adjacency matrix is one idea, or you could use an adjacency list, allowing your to only store the edges which are closer than your cutoff value.
Upvotes: 2
Reputation: 80700
You should indeed use sparse matrices if possible. In scipy, we have support for sparse matrices, so that you can play in python, although to be honest sparse support still has rough edges.
If you have access to matlab, it will definitely be better ATM.
Without using sparse matrix, you could think about using memap-based arrays so that you don't need 40 Gb of RAM, but it will still be slow, and only really make sense if you have a low degree of sparsity (say if 10-20 % of your 100000x100000 matrix has items in it, then full arrays will actually be faster and maybe even take less space than sparse matrices).
Upvotes: 0
Reputation: 234795
A sparse matrix approach sounds ideal for this. The Wikipedia article on sparse matrices discusses several approaches to implementation.
Upvotes: 2