Reputation: 294488
Consider the dataframe df
df = pd.DataFrame(np.arange(25).reshape(5, 5), columns=list('CBESA'))
df
C B E S A
0 0 1 2 3 4
1 5 6 7 8 9
2 10 11 12 13 14
3 15 16 17 18 19
4 20 21 22 23 24
I want to rearrange the columns such that vowels come before consonants and alphabetically otherwise.
I can sort the columns alphabetically with sort_index
df.sort_index(1)
A B C E S
0 4 1 0 2 3
1 9 6 5 7 8
2 14 11 10 12 13
3 19 16 15 17 18
4 24 21 20 22 23
But that leaves 'E'
out of order.
I can get what I want "manually"
df[list('AEBCS')]
A E B C S
0 4 2 1 0 3
1 9 7 6 5 8
2 14 12 11 10 13
3 19 17 16 15 18
4 24 22 21 20 23
How do I do this dynamically considering I don't know the exact letters? I do know that they are single character ascii capital letters.
Upvotes: 4
Views: 123
Reputation: 402852
You'll need sorted
+ reindex
.
df.reindex(columns=[
x[1] for x in sorted(zip(~df.columns.isin(list('AEIOU')), df.columns))
])
sorted
will sort on multiple predicates if you pass it a list/container of tuples generated with zip
.
Alternatively, adopting piR's suggestion and using a lambda
to sort:
df.reindex(
columns=sorted(df.columns, key=lambda x: (x not in 'AEIOU', x))
)
A E B C S
0 4 2 1 0 3
1 9 7 6 5 8
2 14 12 11 10 13
3 19 17 16 15 18
4 24 22 21 20 23
Upvotes: 6