edn
edn

Reputation: 2183

Tensorflow 'list' object has no attribute 'get_shape'

I am trying to read data from multiple csv files by using Tensorflow's Dataset API.

The following version of the code works just fine:

record_defaults = [[""], [0.0], [0.0], [0.0], [0.0], [0.0], [0.]]

def decode_csv(line):
   col1, col2, col3, col4, col5, col6, col7 = tf.decode_csv(line, record_defaults)
   features = tf.stack([col2, col3, col4, col5, col6])
   labels = tf.stack([col7])
   return features, labels

filenames = tf.placeholder(tf.string, shape=[None])
dataset5 = tf.data.Dataset.from_tensor_slices(filenames)
dataset5 = dataset5.flat_map(lambda filename: tf.data.TextLineDataset(filename).skip(1).map(decode_csv))
dataset5 = dataset5.shuffle(buffer_size=1000)
dataset5 = dataset5.batch(7)
iterator5 = dataset5.make_initializable_iterator()

But I would like to make it more dynamic because # columns ( # features) may change in different projects. But when I change the code as following, it just doesn't work. Spending some significant number of hours on the problem did not help either..

record_defaults = [[""], [0.0], [0.0], [0.0], [0.0], [0.0], [0.]]
def decode_csv(line):
   csv_columns = tf.decode_csv(line, record_defaults)
   labels = csv_columns[-1]    # last column is the label
   del csv_columns[-1]        # delete the last column
   del csv_columns[0]       # delete the first column bcz not a feature
   features = csv_columns
   return features, labels

filenames = tf.placeholder(tf.string, shape=[None])
dataset5 = tf.data.Dataset.from_tensor_slices(filenames)
dataset5 = dataset5.flat_map(lambda filename: tf.data.TextLineDataset(filename).skip(1).map(decode_csv))
dataset5 = dataset5.shuffle(buffer_size=1000)
dataset5 = dataset5.batch(7)
iterator5 = dataset5.make_initializable_iterator()

I get the following error when I run the second version above.. Maybe a more experienced person sees the problem at once here..?

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-21-92ea8cc44da0> in <module>()
     18 filenames = tf.placeholder(tf.string, shape=[None])
     19 dataset5 = tf.data.Dataset.from_tensor_slices(filenames)
---> 20 dataset5 = dataset5.flat_map(lambda filename: tf.data.TextLineDataset(filename).skip(1).map(decode_csv))
     21 dataset5 = dataset5.shuffle(buffer_size=1000)
     22 dataset5 = dataset5.batch(7)

~/.local/lib/python3.5/site-packages/tensorflow/python/data/ops/dataset_ops.py in flat_map(self, map_func)
    799       Dataset: A `Dataset`.
    800     """
--> 801     return FlatMapDataset(self, map_func)
    802 
    803   def interleave(self, map_func, cycle_length, block_length=1):

~/.local/lib/python3.5/site-packages/tensorflow/python/data/ops/dataset_ops.py in __init__(self, input_dataset, map_func)
   1676 
   1677     self._map_func = tf_map_func
-> 1678     self._map_func.add_to_graph(ops.get_default_graph())
   1679 
   1680   def _as_variant_tensor(self):

~/.local/lib/python3.5/site-packages/tensorflow/python/framework/function.py in add_to_graph(self, g)
    484   def add_to_graph(self, g):
    485     """Adds this function into the graph g."""
--> 486     self._create_definition_if_needed()
    487 
    488     # Adds this function into 'g'.

~/.local/lib/python3.5/site-packages/tensorflow/python/framework/function.py in _create_definition_if_needed(self)
    319     """Creates the function definition if it's not created yet."""
    320     with context.graph_mode():
--> 321       self._create_definition_if_needed_impl()
    322 
    323   def _create_definition_if_needed_impl(self):

~/.local/lib/python3.5/site-packages/tensorflow/python/framework/function.py in _create_definition_if_needed_impl(self)
    336       # Call func and gather the output tensors.
    337       with vs.variable_scope("", custom_getter=temp_graph.getvar):
--> 338         outputs = self._func(*inputs)
    339 
    340       # There is no way of distinguishing between a function not returning

~/.local/lib/python3.5/site-packages/tensorflow/python/data/ops/dataset_ops.py in tf_map_func(*args)
   1664         dataset = map_func(*nested_args)
   1665       else:
-> 1666         dataset = map_func(nested_args)
   1667 
   1668       if not isinstance(dataset, Dataset):

<ipython-input-21-92ea8cc44da0> in <lambda>(filename)
     18 filenames = tf.placeholder(tf.string, shape=[None])
     19 dataset5 = tf.data.Dataset.from_tensor_slices(filenames)
---> 20 dataset5 = dataset5.flat_map(lambda filename: tf.data.TextLineDataset(filename).skip(1).map(decode_csv))
     21 dataset5 = dataset5.shuffle(buffer_size=1000)
     22 dataset5 = dataset5.batch(7)

~/.local/lib/python3.5/site-packages/tensorflow/python/data/ops/dataset_ops.py in map(self, map_func, num_parallel_calls)
    784     """
    785     if num_parallel_calls is None:
--> 786       return MapDataset(self, map_func)
    787     else:
    788       return ParallelMapDataset(self, map_func, num_parallel_calls)

~/.local/lib/python3.5/site-packages/tensorflow/python/data/ops/dataset_ops.py in __init__(self, input_dataset, map_func)
   1587 
   1588     self._map_func = tf_map_func
-> 1589     self._map_func.add_to_graph(ops.get_default_graph())
   1590 
   1591   def _as_variant_tensor(self):

~/.local/lib/python3.5/site-packages/tensorflow/python/framework/function.py in add_to_graph(self, g)
    484   def add_to_graph(self, g):
    485     """Adds this function into the graph g."""
--> 486     self._create_definition_if_needed()
    487 
    488     # Adds this function into 'g'.

~/.local/lib/python3.5/site-packages/tensorflow/python/framework/function.py in _create_definition_if_needed(self)
    319     """Creates the function definition if it's not created yet."""
    320     with context.graph_mode():
--> 321       self._create_definition_if_needed_impl()
    322 
    323   def _create_definition_if_needed_impl(self):

~/.local/lib/python3.5/site-packages/tensorflow/python/framework/function.py in _create_definition_if_needed_impl(self)
    336       # Call func and gather the output tensors.
    337       with vs.variable_scope("", custom_getter=temp_graph.getvar):
--> 338         outputs = self._func(*inputs)
    339 
    340       # There is no way of distinguishing between a function not returning

~/.local/lib/python3.5/site-packages/tensorflow/python/data/ops/dataset_ops.py in tf_map_func(*args)
   1575       self._output_classes = sparse.get_classes(ret)
   1576       self._output_shapes = nest.pack_sequence_as(
-> 1577           ret, [t.get_shape() for t in nest.flatten(ret)])
   1578       self._output_types = nest.pack_sequence_as(
   1579           ret, [t.dtype for t in nest.flatten(ret)])

~/.local/lib/python3.5/site-packages/tensorflow/python/data/ops/dataset_ops.py in <listcomp>(.0)
   1575       self._output_classes = sparse.get_classes(ret)
   1576       self._output_shapes = nest.pack_sequence_as(
-> 1577           ret, [t.get_shape() for t in nest.flatten(ret)])
   1578       self._output_types = nest.pack_sequence_as(
   1579           ret, [t.dtype for t in nest.flatten(ret)])

AttributeError: 'list' object has no attribute 'get_shape'

ADDENDUM:

The following works as well.

feature_names = ['f0','f1','f2','f3','f4','f5']
record_defaults = [[""], [0.0], [0.0], [0.0], [0.0], [0.0], [0.]]

def decode_csv(line):
   parsed_line = tf.decode_csv(line, record_defaults) # => tensor
   label =  parsed_line[-1]
   del parsed_line[-1]
   features = parsed_line
   d = dict(zip(feature_names,features)),label
   return d

filenames = tf.placeholder(tf.string, shape=[None])
dataset5 = tf.data.Dataset.from_tensor_slices(filenames)
dataset5 = dataset5.flat_map(lambda filename: tf.data.TextLineDataset(filename).skip(1).map(decode_csv))
dataset5 = dataset5.shuffle(buffer_size=1000)
dataset5 = dataset5.batch(7)
iterator5 = dataset5.make_initializable_iterator()

But now the decode_csv function is returning a dictionary of (feature_name,feature_value) pairs. Why would someone like to return a dict from this function? Doesn't it make it very difficult to vectorize calculations like forward propagation, etc?

Upvotes: 2

Views: 6117

Answers (1)

edn
edn

Reputation: 2183

Solved. Below is the working version. I am not copying the entire thing to save some space. In the excel file, the first column is not a feature, just a training example ID. And the last column is the label only. Stacking the features with the tf.stack(...) function solved the problem.

feature_names = ['f1','f2','f3','f4','f5']
record_defaults = [[""], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]


def decode_csv(line):
   parsed_line = tf.decode_csv(line, record_defaults)
   label =  parsed_line[-1]
   del parsed_line[-1]
   del parsed_line[0]
   features = tf.stack(parsed_line)    # ADDED LINE
   d = features, label
   return d

filenames = tf.placeholder(tf.string, shape=[None])
dataset5 = tf.data.Dataset.from_tensor_slices(filenames)
dataset5 = dataset5.flat_map(lambda filename: tf.data.TextLineDataset(filename).skip(1).map(decode_csv))
dataset5 = dataset5.shuffle(buffer_size=1000)
dataset5 = dataset5.batch(7)
iterator5 = dataset5.make_initializable_iterator()

Upvotes: 1

Related Questions